Welcome

ccSPF Closed Cell Spray Polyurethane Foam

Much more than an Insulation!

April 23, 2025

Introductions

Michael Pace

- Building Resource Inc.
 - President
 - BSS Building Science Specialist, 2008
 - Member CSC, OBEC, OACETT

Steven Cole

- BASF Canada
 - Key Account Manager Spray Central & Western Canada

Resources

Gary Chu

- BASF Canada Inc.
 - Senior Construction and Standards Regulations Specialist
 - Participates in Codes and Standards Development

Ibrahim Huseen, M.Eng.

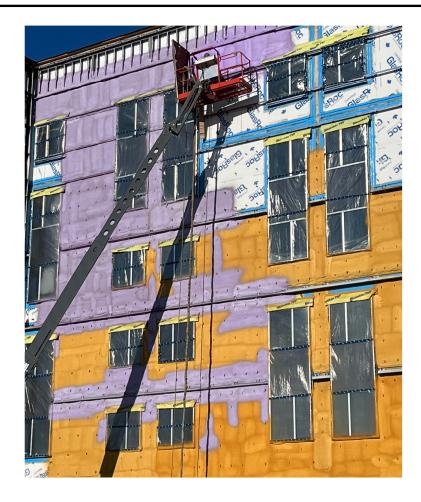
- BASF Canada Inc
 - Construction and Standards Regulations Specialist

Learning Objectives

- 1. Define what Closed Cell Spray Polyurethane Foam (ccSPF) is and how it compares to Open Cell Spray Polyurethane (ocSPF) and other insulation types
- Describe the product standard for ccSPF and the required and optional testing manufactures can undertake
- 3. Review the many applications for ccSPF within the building envelope including Fire Rated assemblies

Closed Cell Spray Polyurethane Foam

ccSPF

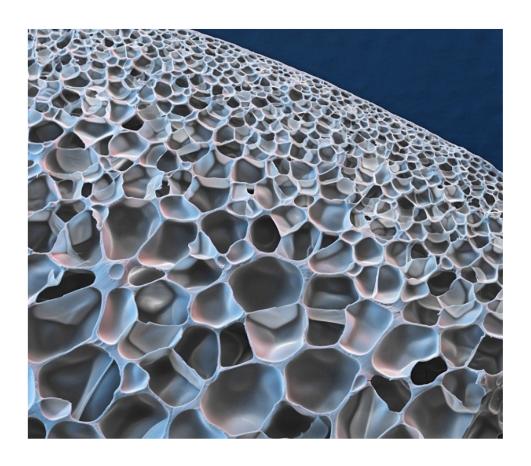


Foam Types

CLOSED cell ccSPF (WALLTITE)	Property	OPEN cell ocSPF (ENERTITE)
CAN/ULC S705.1:2018-REV1 Included in NBC since 1990's	Standard	CAN/ULC S712.1 Not in the NBC
Medium	Density	low
HFO	Blowing Agent	Water (CO2)
30psi Rigid	Strength	<4psi Soft
25-40X	Expansion (liquid)	100-120X
Low	Acoustic STC	High
Minimal	Water Absorption	High
Standard: High R insulation, air and vapour barrier	Functions	Insulation Air Barrier
Optional : Radon barrier, Air Barrier System, Fire Rated Systems		

Foam Types

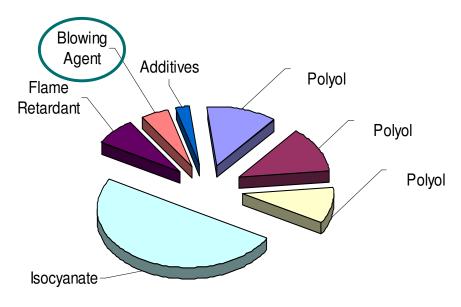
ccSPF applied as ci Self Supporting



ocSPF must be scarfed and supported

ccSPF Composition

- Blowing Agents occupy 95% of the volume of foams
- Most of the GWP of foam is from the Blowing Agent


ccSPF

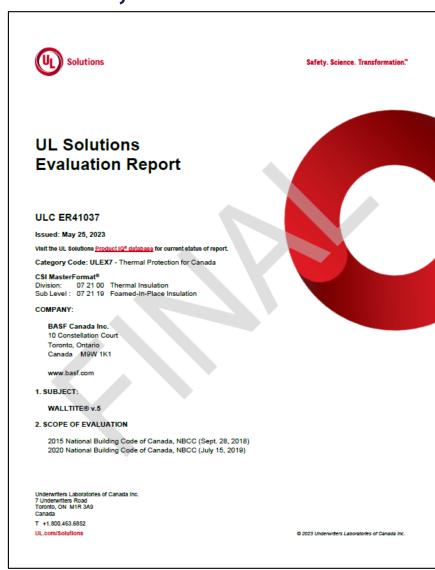
ccSPF Composition

Isocyanate

Resin

BASIC Requirements for ALL ccSPF sold in Canada

- Complies with CAN/ULC S705.1 as verified by a third party report
- Accurate Reporting of the Long Term Thermal Resistance (LTTR)

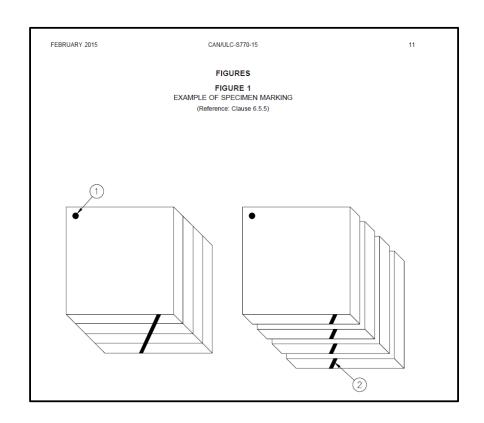

ccSPF Standards

CAN/ULC-S705.1-15 STANDARD FOR THERMAL INSULATION - SPRAY APPLIED RIGID POLYURETHANE FOAM, MEDIUM DENSITY - MATERIAL THIRD EDITION

Third Party Report

Confirmation of Compliance

ULC or CCMC


ccSPF Standards

Properties	Requirements	Results
Density (minimum site specified density)	≥ 28 kg/m ³	32.5 kg/m ³
Air Permeance	≤ 0.02 L/(s·m²)@75Pa	Compliant
Compression Strength	≥ 170 kPa	203 kPa
Dimensional Stability		
28 d at -20±3°C, ambient humidity	-2 to +5%	-0.5%
28 d at 80±2°C, ambient humidity	-2 to +8%	+1.0%
28 d at 70±2°C, 97±3% R.H	-2 to +14%	+8.0%
Fungi Resistance	No Growth	Compliant
Long Term Thermal Resistance		-
@ 50mm thickness	≥ 1.80 m ² ·K/W	1.95 m ² ·K/W
@ 75mm thickness	Declare	3.00 m ² ·K/W
Open-Cell Content	≤ 10%	7%
Surface Burning Characteristics		
Flame Spread Rating (CAN/ULC-S102)	≤ 500	Compliant
Flame Spread Rating (CAN/ULC-S127)	≤ 500	Compliant
Tensile Strength	≥ 200 kPa	267 kPa
Time to Occupancy	< 30 Days	25 hrs.
Water Absorption by Volume	≤ 4.0 %	1.9 %
Water Vapour Permeance @ 50mm thickness	≤ 60 ng/(Pa·s·m²)	56 ng/(Pa·s·m²)

ccSPF Thermal Performance

What is Long Term Thermal Resistance (LTTR)?

- Test method to estimate the future thermal resistance for insulation products, with captive blowing agents; ccSPF, XPS, Polyiso...
- Required for ALL ccSPF products sold in Canada

ccSPF Thermal Performance

Why is this important?

- Used for energy modelling
- To prove compliance with codes; Step Code, Passive House...

EXAMPL	E OF R Value Variation Same product	on
Method	Result R/inch (RSI/25mm)	Variance (%)
Initial R value	7.1 (1.25)	
ASTM C518 Aging (USA)	6.5 (1.14)	9
CAN/ULC S770 (LTTR)	5.2 (0.92)	27

ccSPF Thermal Performance

CAN/ULC-S770 STANDARD TEST METHOD FOR DETERMINATION OF LONG-TERM THERMAL RESISTANCE OF CLOSED-CELL THERMAL INSULATING FOAMS

CAN/ULC S770 updated in 2025

Notes to Table A-9.36.2.4 (1)

(6) All types of cellular foam plastic insulation manufactured to be able to retain a blowing agent, other than air, for a period longer than 180 days shall be tested for long-term thermal resistance (LTTR) in accordance with CAN/ULC-S770, "Standard Test Method for Determination of Long-Term Thermal Resistance of Closed-Cell Thermal Insulating Foams." This LTTR value shall be input as the design thermal resistance value for the purpose of energy calculations in Section 9.36. Product standards contain a baseline LTTR for a thickness of 50 mm, from which the LTTR for other thicknesses can be calculated.

Optional Testing

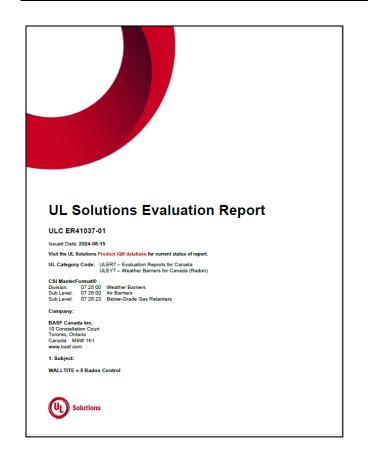
- Air Barrier System or Assembly
- Radon Barrier
- Environmental Product Declaration (EPD)
- Part of a Fire Rated Assembly

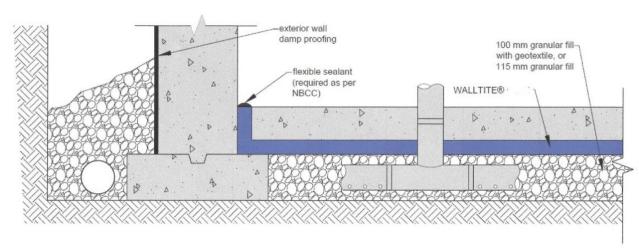
Air Barrier System or Assembly

CAN/ULC S742

- Allows for use without the need for a separate, full coverage, AVB
- Variables
 - Transition membrane requirements
 - Treatment at board joints, penetrations...
- Substrates; GMGB and/or CMU

CONFIRM by reading ULC or CCMC Report

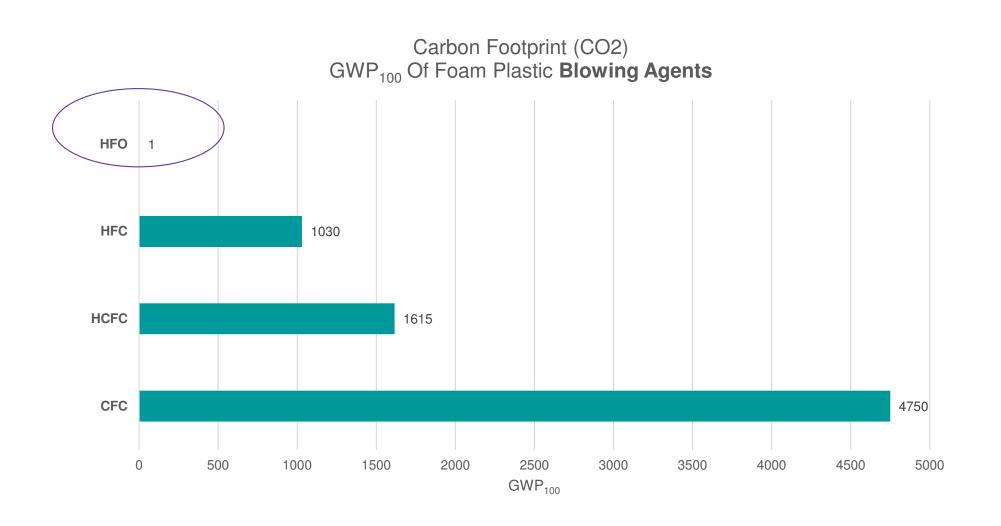




Radon Barrier: ISO 11665 Measurement of Radioactivity in the Environment – Air

- Confirmed by a third party report
- Allows for use without the need for a separate under slab vapour barrier (poly)
- Eliminates almost all sealants and tapes
- Typically applied at 50mm or greater

Construction Products Representatives


ULC ER41037-01 WALLTITE v.5 Radon Control
Testing indicated that (WALLTITE v5) exceeded the performance of 6 mil poly
for any thickness above 15 mm

Sustainability

Sustainability

Sustainability

Environmental Product Declaration (EPD)

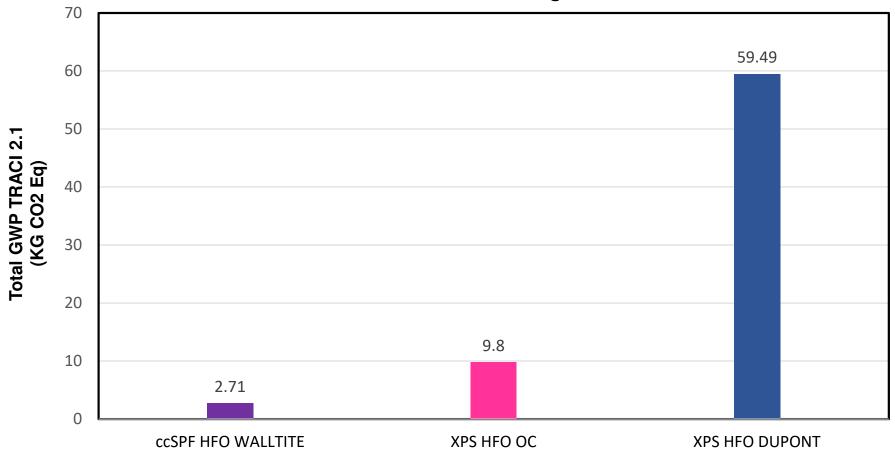
- Sustainability of the <u>finished</u> <u>product</u>
- Global Warming Potential (GWP)
- Allows for comparisons with other brands and types of insulation

ENVIRONMENTAL PRODUCT DECLARATION

SPRAY POLYURETHANE FOAM INSULATION

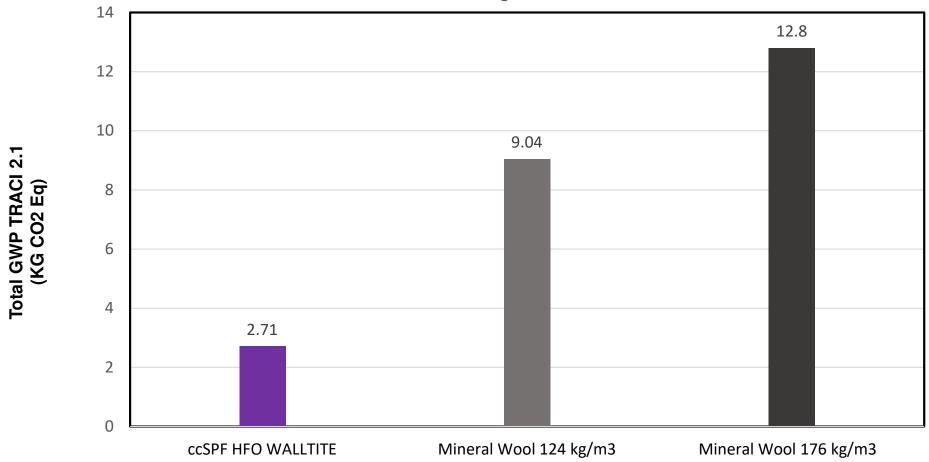
CLOSED CELL USING HYDROFLUOROOLEFINS (CCSPF, HFO)

SPF products are commonly used in residential, light commercial, commercial, institutional, and certain industrial applications. Closed cell SPF (ccSPF) is applied to the interior or exterior side of the building envelope.


Founded in 1987, originally as the Polyurethane Foam Contractors Division, the Spray Polyurethane Foam Alliance (SPFA) is the collective voice, along with the educational and technical resource, for the spray polyurethane foam industry. Our experienced staff and membercomprised committees provide a wide variety of services to the industry.

SPFA develops tools designed to educate and influence the construction industry with the positive benefits of spray polyurethane foam roofing, insulation, coatings, and specialty installations.

GWP - WALLTITE vs XPS


Functional Unit: 1m²@Rsi 1.0

Source: Values a	ire based on data sourced from pub	olicly available environmental produc	ct declarations (EPDs) as of 2021 05 20
ccSPF:	SPFA	EPD-085	ASTM
XPS HFO	Owens Corning	4789639125.101.1	ULE
XPS HFO	Dupont	4786548101.101.1	ULE
XPS HFO:	Dupont	4789559274.102.1	ULE

GWP – WALLTITE vs Mineral Wool

Functional Unit: 1m²@Rsi 1.0

Source: Values are based on data sourced from publicly available environmental product declarations (EPDs) as of 2021 05 20

ccSPF: SPFA EPD-085 ASTM Mineral Fibre NAIMA Assoc. 4788703029.101.1 ULE

NOTE: Published in the Rockwool website.

Comfort Board 80 has a density of 128 kg/m3 which is comparable to the 124kg/m3 in the EPD

Comfort Board 110 has a density of 176 kg/m3. The GWP value is prorated to account for the increased GWP for this higher density.

QAP

- Third party QAP provider for most Manufacturers
- Certifies installers meet the CAN/ULC S705.2 standard
- Must carry photo ID
- https://qap.caliberga.com/en/
- Also CUFCA and UFC

SQAP Cards

Registered Contractor

Need to be registered and in good standing with Certification Organization to buy product

Certified Installer

Certified by certification organization to spray foam

Trained on spray foam and building science

QAP

INSULATION SYSTEM DAILY WORK RECORD

EMAIL TO DWR@CALIBERQA.COM WITHIN 1 MONTH

	WINEGO,	ALIDE		۸.۰	O III				014	700	100		y 100	33 3		250		1000			•				
Contractor:																ate:		Y	Y	Y	Y	M	M	D	D
Installer:	-	_		\square	_	+	╄	-	-		+	-				ard#		_	-	-	_	_	_	-	_
Apprentice:									_						-	opr. C	Card #	1							
O		4		,	200				P	ROJE	TIN	NFOF	RMA	OIT	N			ction		Here					-40
Customer Na		-			-				+		-	-							3 ACI		cupie	es 🗆		_	ied 🗆
Project Name		-			-	-		-	+		+	-			-				olate			es 🗆			• D
Project Addres	58:	-	Н		-	-	-	-	+	-	+	-		Н								es 🗆			
City:	BC	MB	NB	N		NS	N		ON	PE	-	-	10	NT.					Post						
Prov.: AB		MB	NB	N	iL	NS	N	U	ON	PE	QC	5	K	HTC	EK		_		ential						her 🗆
Project Descri		200	-				1		_		1					Building Permit Posted: Yes No Building Permit #:									
Total Project Person/Compa				. the	man l		-	sq. m			50	ą. ft.	_			Bui	aing	Permi	R Dr.						
Person/Compa	any resp	onsibi	e 101	tner	mai c	arner	-																		
Soprema□ B/	ASE C	arlisle	n F	lunts	man	/HBS	'n	JMn	Shu	MATE nda SE	RIA	SW	OR D::	MA1	TIO!	Pro	duct								
oopromes Dr			-	осуа		,,,,,,,,	,		-	Resin						-									
			15	ocya	mate		_	Т	+	cesin		_		_	1	For	mula	tion							
Lot number:			14	De b	V 00	100		D 10		N. N.	- hv		10.0	-	10			C#.c							
Expiry Date:			Y	Y	YY	M	М	D	Y	YY	Y	M	M	P	D		ULC		or						
Expiry Date.			Υ	Y	YY	M	M	D D	Y	YY	Y	M	M	D	D							7.73.5			
Manufacturin	g Date:															Der	nsity:	ч	Light	Ч	Medi	um		ner	
Drum Tempera	ature:									%E □			*C			Col	or:								
Quantity of Cy	cles Us	ed:				Qu	Jan	tity o	f Fo	am Us	ed:					Kg			Po	unds	(lb.) [
										E	QUI	PME	NT												
Manufacturer of	of Machi	ine:									N	Aode	t:												
Mixing Chamb	er Size:										H	lose	Len	gth:								m		ft D]
Isocyanate psi	20										R	Resin	psi:												
Primary Heate	r Tempe	erature	:								H	lose	Ten	nper	atur	e:						٩F		°C [
								. 1	INV	RONM	ENT	AL C	CON	DIT											
Time (hhmm)		Ambi	ent 1	Temp	perat	ure											/eloci	ty vh 🗆		:	Subst	rate	Tempe	eratu	re
24n format		-	-	_	0		(%) Mp								ipn		PAT	ип Ш					-0		
								-					+						-						
							_																		
							_	-		JBSTR	ATE		MPAC	TION	10										
Type:				_					31	JBSIK	AIE		NUI	HOR	45			Det	tails:						
CONDITIONS						S	PE	CIAL	co	NDITIO	NS	9						-							
Clean:		Yes	П	N	lo 🗆			ner R					Yes	П	Ť	No [7	-							
Dry:		Yes			0 0	_			_	guired:		_	Yes		+	No E									
Properly Faste	ned:	Yes	-		0 0	_	-	rior (-		-	Yes	_	+	No E		Moi	sture	Conte	ent (M	C):			
Proper Adhesi		Yes			0 0	-	-			al Barri	ier:	_	Yes		+	No E						,			
																	_								
EST RESULTS	S	Dens	ity (Calc:	: 0	en c				1000				16 :				_					Kg/m3	+	16 = p
Mass			_	_	_	_	-			□cm³			II) I	⊔mi	(clo	osed	cell)	Cal	culat	ed De	nsity				
Weight of Sar		140	-		-	-	_			f Samp			_	_		-	-			_	-				
Weight of Sam		ar.	+	-	-	-	+		-	Samp			-			-	-				_				
Weight of Sample #3 (g):						-	+		ne o	Samp	e #3	3:	-			-						-			
Thickness Pass #1:						-	-	mm					-		-		1		inche			-			
Thickness Pass #2:							-	mm					-		-		1	inches							
i nickness Pas						• □	-	mm			1		4	-	•		-	-	inche			-			
March						3 □ Fail □		otal	Thic	kness					mn	-		-		1			nches		
		Adhesion Test #1: Pass					1						Cohesion Te			est #1	1:	Pass	Pass Fail C						
Adhesion Tes							_					-			-			-				_			
	#2:	Pa	ass (ass (ass (Fail D	1					_		esio		est #2		Pass			Fail				

Updated: 2021-07-12

INSULATION SYSTEM DAILY WORK RECORD

EMAIL TO DWR@CALIBERQA.COM WITHIN 1 MONTH

Contractor	r:											D	ate:	Y	Y	Y	Y	M.	M	D	D
installer:												С	ard #:								
Apprentice:												A	ppr. Card #								
					- cy - 5			Р	ROJE	CTIN	FORM	MATION									
Customer	Nan	ne:										210000	Construc	tion:		Unoc	cupie	d 🗆	Oc	oupie	d \square
Project Na	ıme:												Ventilatio	n 0.3	ACH	:	Ye	s 🗆		No	
Project Ad	dresi	8:											Spray Are	ea Is	olatec	i:	Ye	s 🗆		No	
City:													Warning :	Sign	Post	ed:	Ye	s 🗆		No	
Prov.: /	\B	BC	MB	NB	NL	NS	NU	ON	PE	QC	SK	OTHER	Type: Re	eside	ential		Comn	nercia		Othe	er 🗆
Project De	scrip	tion:									1.55		Building P	ermi	Post	ed:	Yer	sП	No [
Total Proje	ect V	Vall A	rea:				sq.	m 🗆		sq	. ft. 🗆		Building P	ermi	ø:						
Person/Co	mpa	ny res	ponsib	le for	therma	al barrie	r:														

	1	soc	yana	ate					R	esir	1	28		0 0	985.0		
Lat number:																	Formulation
Expiry Date:	Y	Y	Y	Y	М	M	D	D	Υ	Y	Y	Y	М	М	D	D	□ CCMC #, or □ ULC #
Manufacturing Date:	Υ	Y	Y	Y	М	M	D	D	Y	Y	Y	Y	М	М	D	D	Density: Light
Drum Temperature:										%E				*C			Color:
Quantity of Cycles Used:					0	Qua	ntity	of	For	am i	Use	ed:					Kg ☐ Pounds (lb.) ☐
	0.0		300								EC	QUIP	ME	NT			
Manufacturer of Machine:												M	ode	l:			
Mixing Chamber Size:												H	ose	Len	gth:	8	m - ft -
socyanate psi:												R	esin	psi:			
Primary Heater Temperat	ure:											H	ose	Ten	per	atun	e:
								E	NVII	RON	MME	ENTA	AL C	ON	DIT	ION:	s
Time (hhmm) An 24h format	bient F 🗆	Ter	mpe °C	eratu	are-			R	telar		Hui %)	midi	ity	1	N	W Aph I	ind Velocity Substrate Temperature ☐ Km/h ☐ °F ☐ °C ☐

SUBSTRATE CONDITIONS

Type:						Details:
CONDITIONS			SPECIAL CONDITIONS			
Clean:	Yes 🗆	No □	Primer Required:	Yes 🗆	No □	
Dry:	Yes 🗆	No □	Protection Required:	Yes 🗆	No □	
Property Fastened:	Yes 🗆	No □	Exterior Coating:	Yes 🗆	No □	Moisture Content (MC):
Proper Adhesion:	Yes 🗆	No □	Interior Thermal Barrier:	Yes 🗆	No □	

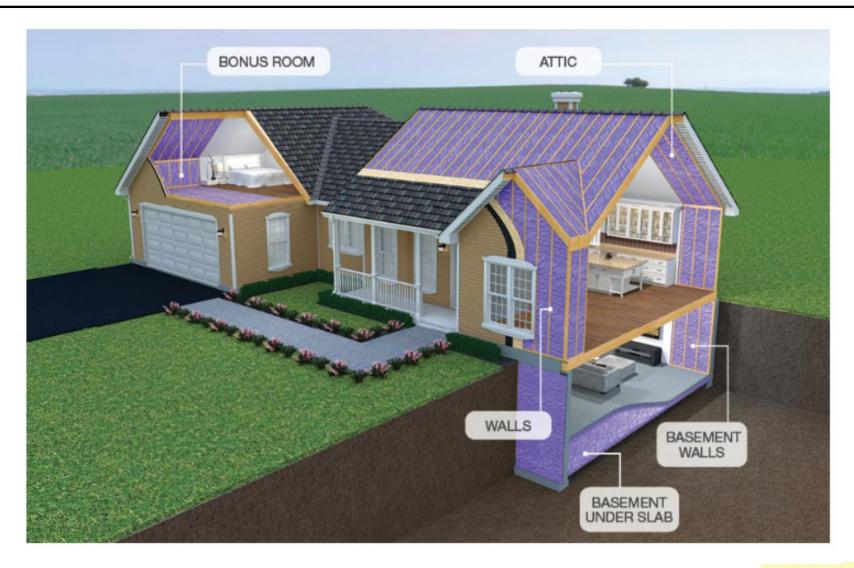
TEST RESULTS De	ensit	y Calc:	0	pen ce	ll: g + cm³ x 1000 =	Kg/m3	+ 16	= pcf	CI	osed	cell: g 4	mL x	1000	= Kg/m3	+ 16 = pct
Mass					Volume □cm³ (d	open ce	d) □n	olo) In	sed cell)	Cai	culated	Dens	sity		
Weight of Sample #1(g):					Volume of Samp	le #1:									
Weight of Sample #2 (g):		-			Volume of Sample	#2:									
Weight of Sample #3 (g):					Volume of Sample	#3:									
Thickness Pass #1:					mm			-	. /		inches				
Thickness Pass #2:		-			mm			-	1		inches				
Thickness Pass #3:					mm			-	/		inches				
Number of Passes:	1 🗆	2 [3 □	Total Thickness			mm	ı	-		/		inches	
Adhesion Test #1:	Pas	s 🗆		Fail 🗆			Cohesia	on Ter	st #1:	Pass	s 🗆	F	ail 🗌		
Adhesion Test #2:	Pas	s 🗆		Fail 🗆			Cohesia	on Ter	st #2:	Pass	s 🗆	F	ail 🗌		
Adhesion Test #3:	Pas	s 🗆		Fail 🗆			Cohesia	on Ter	st #3:	Pass	s 🗆	F	ail 🗌		
CORRECTIVE ACTIONS	(Li	st corn	ectiv	e actio	n taken as a result	of test	failure	s)		Sig	nature				
CORRECTIVE ACTIONS			ectiv						bt #3.				ап		

Updated: 2021-07-12

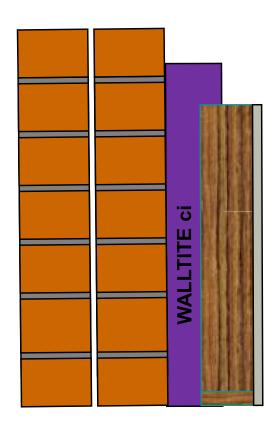
Limitations

Installation

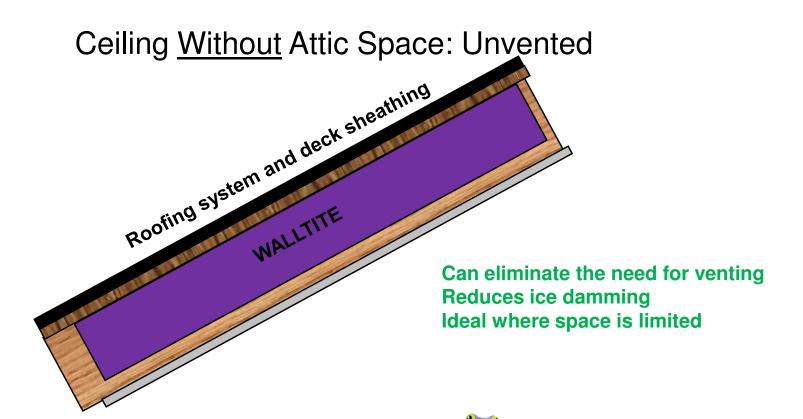
- Apply in lifts of 50mm max and allow cooling
 - Low Exotherm products allow 125mm per lift
- Apply at -10 C to +40 C
- Max RH is 85%
- Substrate; Compatible, DRY, clean, free from oils
- Do not apply over batt or other soft substrates
- Keep 75mm from heat sources



Products


WALLTITE Launched in the late 1990's

- WALLTITE XL01 2020
 - HFO BA
 - LOW Exotherm 5.25"/lift
- NEW WALLTITE v.5 2023
 - Better installation, supply chain...
 - 5-8% Higher R value



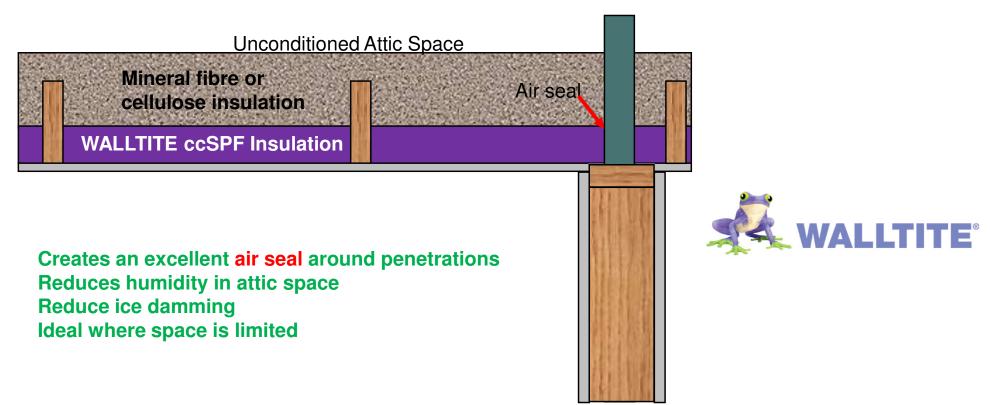
Exterior Solid Masonry High EFFECTIVE R Value Functions as

Air Barrier Vapour Barrier Compact All ccSPF applied from interior

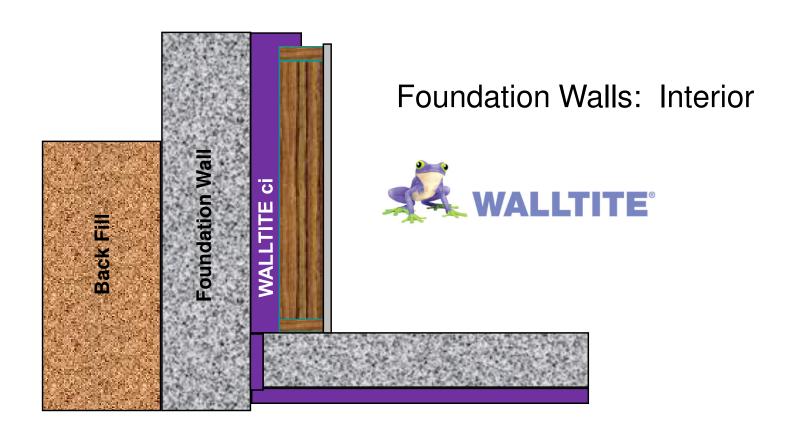
Exposed Floor

INTERIOR conditioned space

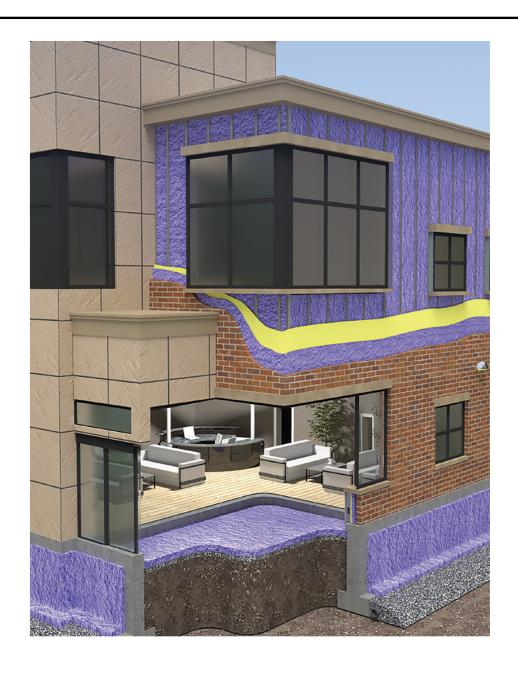
WALLTITE


EXTERIOR unconditioned space Garage, Cantilever...

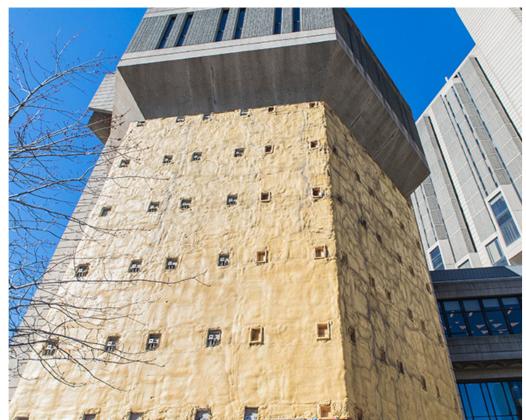
Ideal for Garage ceiling, overhangs



Ceiling With Attic Space

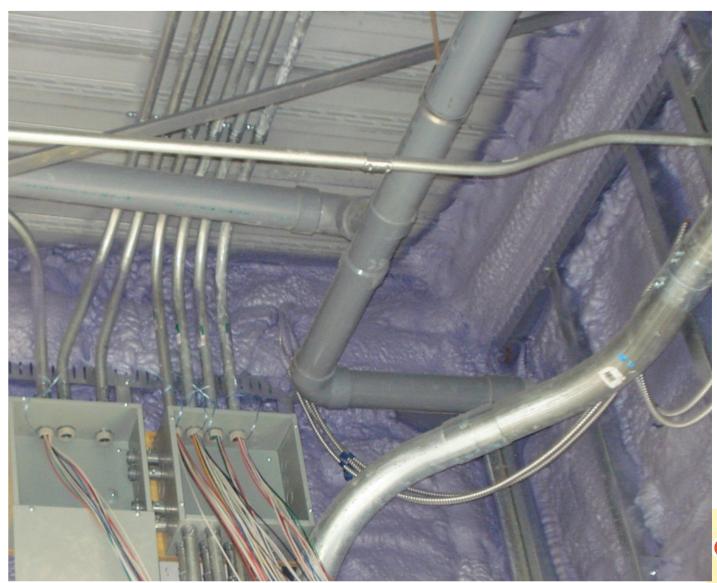


Applications- ICI



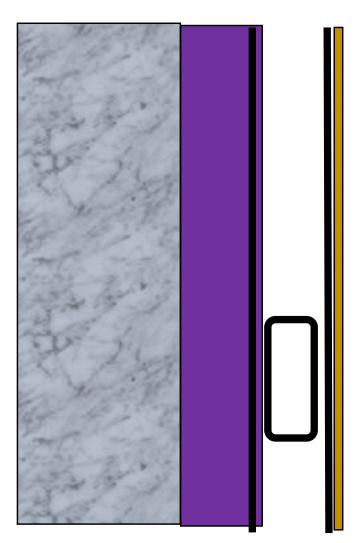
Insulation and ReClad

University of Toronto Thomas Fisher Rare Book Library WALLTITE applied from the exterior, precast cladding panels installed 2017



Roof Re Clad

WALLTITE installed at 100mm thick followed by metal roof installation.



Air Sealing

Interior of Precast

Existing solid masonry or precast
Steel studs- set back
WALLTITE ccSPF Insulation
Interior Gypsum Board

ci improves performance Minimal condensation potential Minimal thermal bridging

Macdonald Block Reconstruction Project, Toronto

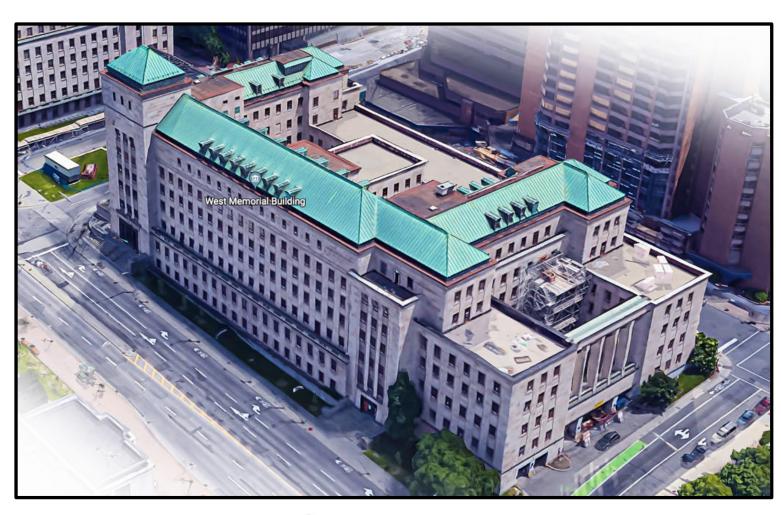
Owner: Infrastructure Ontario Contract Value: \$1.536 billion

1Million ft² WALLTITE installed on the interior of exterior precast and stone

Architect: WZMH

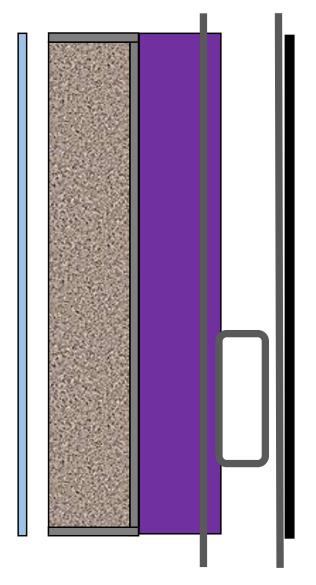
Building Envelope Consultant: Engineering Link and Synergy Consultants

GC: Fengate PCL Progress Partners (FP3)


West Memorial Building Reconstruction Project, Ottawa

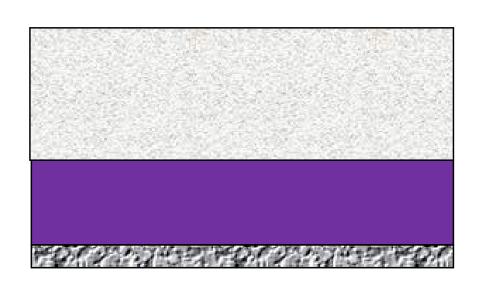
WALLTITE installed on the interior of exterior precast and stone

Architect: Moriyama & Teshima Architects and Kasian Architecture


Building Envelope Consultant: Morrison Hershfield, David Kayll

Owner: PSPC GC: Ellis Don

Interior of Spandrel Panels

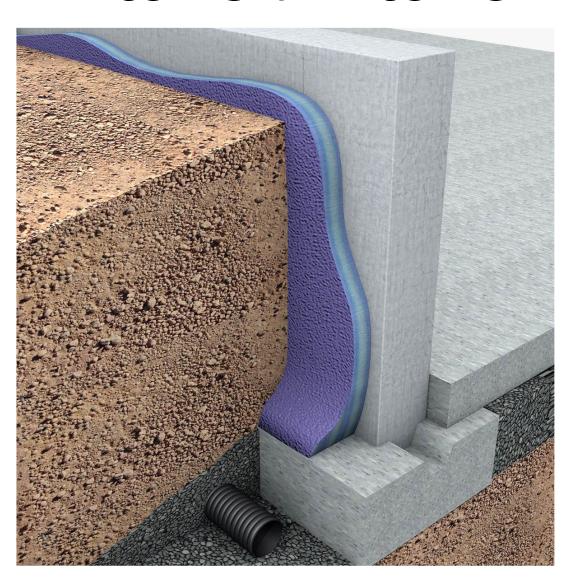

Curtain Wall Spandrel Panel w/ Metal Backpan + Rockwool Steel studs- set back 25mm min.

WALLTITE ccSPF Insulation Interior Gypsum Board

ci improves performance Minimal condensation potential Minimal thermal bridging Passed CAN/ULC S101 (State)

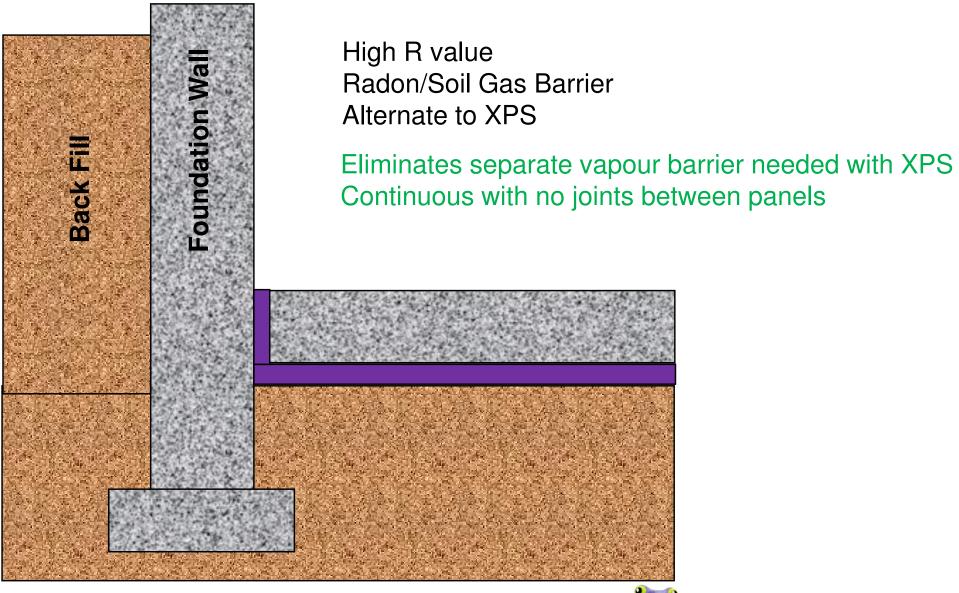
Overhead Cantilevered or Soffits

Suspended, reinforced slab


WALLTITE ccSPF Insulation

Protection- Gypsum Board or a Thermal Barrier meeting CAN/ULC S124 (Flameseal TBC)

Thinner than other systems, preserving headroom

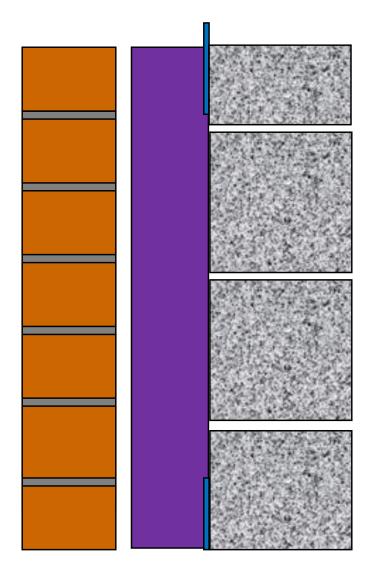


Foundation Walls: Interior/Exterior

Foundation Walls: Interior/Exterior

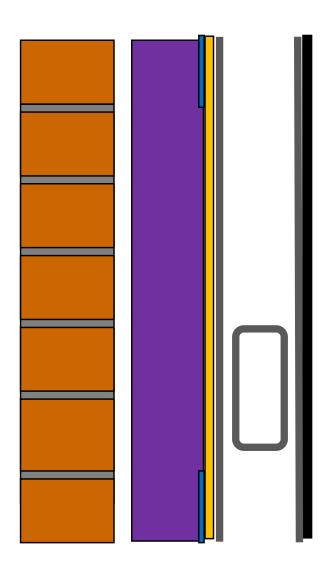
High R value No fasteners needed Compatibility with waterproofing membranes Alternate to XPS Eliminates fasteners needed with XPS Continuous with no joints between panels Back **Basement Floor** Slab on Grade

WALLTITE


Compressive Strength D1621

WALLTITE v.5	XPS (type 4)
29 psi	30 psi
205 kPa	210 kPa

Cavity Wall: CMU Backup



CMU Block Backup
Transition membranes

WALLTITE ccSPF ci
MASONRY Cladding

Cavity Wall: Stud/Sheathing

Steel Stud and Gypsum Sheathing Transition membranes

WALLTITE ccSPF ci
MASONRY Cladding

Project- Woodstock Hospital

Limitations

Project- Woodstock Hospital

Limitations

- ALL plastic foams are combustible
- Allowed in Combustible and Non-Combustible Construction

PAST Limitations

- Hourly Rated Walls
 - CAN/ULC S101 Assembly testing required
- Installed with cladding other than Masonry (NC)
 - CAN/ULC S134 Testing Required

- CAN/ULC S101 Assembly Hourly Rated Walls
- CAN/ULC S134 Compliant Systems

- Where is an Hourly Rated wall needed?
 - Walls near property lines
 - Walls bearing the load of a fire rated floor
 - ► Fire Rated Floors

UL Product iQ®

SEARCH MY SEARCHES MY TAGS MICHAEL 🌣

BXUV - Fire Resistance Ratings - ANSI/UL 263 Certified for United States BXUV7 - Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada

<u>See General Information for Fire-resistance Ratings - ANSI/UL 263 Certified for United States</u>

Design Criteria and Allowable Variances

<u>See General Information for Fire Resistance Ratings - CAN/ULC-S101 Certified for Canada Design Criteria and Allowable Variances</u>

Design No. W307

June 14, 2024

Bearing Wall Rating — 1 or 2 Hr (see Item 3). Finish Rating — See Items 3, 3A, and 3B

This design was evaluated using a load design method other than the Limit States Design Method (e.g., Working Stress Design Method). For jurisdictions employing the Limit States Design Method, such as Canada, a load restriction factor shall be used — See Guide BXUV or BXUV7

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

reedbac

CAN/ULC-S101 Assembly

BASF HP+ CFR Systems that Comply- Wood frame

Test Standard	Fire Resistance Rating	Design Number	BASF System Designation	Framing
CAN/ULC-S101	1 h	BASF/SI 60-01	HP+ E	Wood
CAN/ULC-S101	1 h	BASF/SI 60-02	HP+ X	Wood
CAN/ULC-S101	1 h	BASF/SI 60-03	HP+ Modified X	Wood
CAN/ULC-S101	1 h	BASF/SI 60-04	HP+ XR, HP+ XR-S	Wood
CAN/ULC-S101	1 h	BASF/SI 60-06	-	Wood

Note ¹: CAN/ULC-S101 design listing BASF/SI 90-01 requires two gypsum boards on the interior side of the assembly for the HP+ CFR system; refer to individual design listings for differences.

CAN/ULC-S101 Assembly BASF HP+ CFR Systems that Comply- Steel frame

Test Standard	Fire Resistance Rating	Design Number	BASF System Designation	Framing
CAN/ULC-S101	1 h	BASF/SI 60-05	-	Steel
CAN/ULC-S101	90	BASF/SI 90-01	HP+ CFR ¹	Steel

Note ¹: CAN/ULC-S101 design listing BASF/SI 90-01 requires two gypsum boards on the interior side of the assembly for the HP+ CFR system; refer to individual design listings for differences.

TECH TIP # 22

Fire-Resistant Rated Construction Assemblies

Fire-resistance rated construction designs are required in some residential single-family home, multi-family structures (aka MDU or Multi-dwelling units), and most commercial building applications to separate adjacent spaces, safeguarding against the spread of fire to, within, or from other buildings. The use of foam plastics including spray polyurethane foam (SPF) in these designs requires specific testing and compliance to be utilized in a code-compliant manner. This is specifically called out in Chapter 26 of the International Building Code (IBC), and Section B316 of the International Besidential Code (IBC).

The fire resistance rating is the amount of time an assembly or component maintains the ability to withstand fire exposure. BASF holds a variety of fire-resistance rated assemblies with times ranging from 45-min to 4-hours in the Underwriters Laboratories (UL) Directory – there are a total of 25 UL-rated wall assemblies and 16 floor-ceiling assemblies listed for BASF, as outlined on the following tables.

Updated: 22/04/2025

UL Directory - ANSI / UL263 / CAN/ULC-101 (ASTM E119)

Steel Studs with Brick Veneer Assembly #	Currently Available BASF Systems Approved	Load Bearing or Non-Load Bearing	Fire Rating	Fire Exposure	SPF Location
<u>U425</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Bearing	3/4 hr to 2 hr	Both Options	Exterior
<u>V454</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Bearing or Non-Bearing	1 hr	Asymmetrical	Stud Cavity
<u>V495</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Non-Bearing	3 hr	Asymmetrical	Stud Cavity or Masonry Cavity
<u>W417</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Non-Bearing	1 hr	Asymmetrical	Stud Cavity
<u>W421</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Non-Bearing	1 hr	Asymmetrical	Stud Cavity
<u>W444</u>	Enertite® G, Enertite® Max Walltite® Max, Walltite® LWP, Walltite® V.5	Non-Bearing	1 hr	Asymmetrical	Stud Cavity

CAN/ULC S134 Compliant Systems

3.2.3.8. – Protection of Exterior Building Face

3.1.5.5. – Combustible Components in Exterior Walls

GOAL: To reduce the risks of a vertical fire spreading on the facade of a building (fire originating from outside or from inside spreading through an opening)

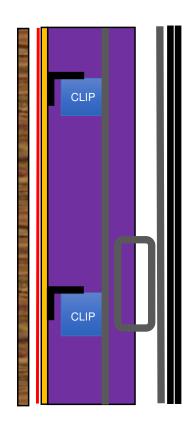
- OBC Allows the use of ccSPF with Concrete or Masonry (min 25mm) Cladding
 <u>Or</u>
- Assembly passing CAN/ULC-S134

Fire Requirements Overview CAN/ULC S134

Fire Requirements Overview CAN/ULC S134

HP+ CFR PASSES!

CAN/ULC-S134		
Acceptance Criteria	Results	
Flame Spread Above Opening (metres max)		
5	2	
Maximum Average Heat Flux kW/m2		
35.00	16.43	


HP+ CFR Wall Assembly

BASF HP+ CFR Systems

Compliant with CAN/ULC S134

Listing: Design No. BASF/SI 25-01

and

S101 Fire Rated for 90 Minutes

Listing: Design No. BASF/SI 90-01

Components

Interior Gypsum Wallboard: 2 layers, 15mm type X

Wall Framing: Min. 63mm, 16 GA steel studs and tracks @ 406mm Thermal Clips: 82mm ISO Clips fastened using (2) 50mm screws. Space @406mm oc vertically and horizontally

Metal Angle: 50mm X 50mm, 16 GA steel angle Exterior Sheathing: 15mm GMGB (Densglass) Sheathing Seam Tape (3M Fire and Water tape)

Membrane- Vapour Permeable

Insulation: WALLTITE CM01 or XL01,

Total Thickness: 152mm max.

In Stud Cavity: 63mm

In the plane of the Thermal Clips: 89mm

Air Space

Cladding: Non-combustible as per CAN/ULC S114

BASF HP+ CFR Systems

Effective R Value

WALLTITE v.5 (mm)	Effective (R)
127	21
140	21.9
152	23.1

BASF HP+ CFR Systems

Benefits vs Non Combustible Insulation (Mineral Fibre)

PERFORMANCE

- ✓ High effective R value
- ✓ Low Embodied Energy; GWP/Carbon Footprint
- ✓ Reduced thickness of wall; greater usable floor space
- ✓ Light Weight
- ✓ Code Compliant; Fire Rated and S134 Compliant
- ✓ Cost Competitive

Take Aways

- ccSPF provides high R value insulation and is supported by third party QAP Provider.
- Versatile; Above grade, below grade, overhead, buried
- Sustainable; Low GWP vs XPS and Mineral Fibre
- Some ccSPF provide Air Barrier system, Radon Barrier, Fire Rated Systems
- Write clear concise specs and confirm products that are included have the needed credentials (UL Reports..) and do not state "or equal".
- Prequalify ccSPF Installers and hold a prebid meeting to communicate expectations (DWR..).

walltite.com buildingresource.ca michael@buildingresource.ca

BASE We create chemistry