A Reality-Based Cost-Benefit Analysis of High Performance Buildings in Victoria, BC

Eric Wilson, Milad Mahmoodzadeh, Kevin Pickwick, Terry Bergen, Phalguni Mukhopadhyaya

Introductions

ERIC WILSON B.Eng, MASC, EIT

PROFESSIONAL EXPERIENCE

University of Victoria, PhD Candidate

 Exploring the importance of empathetic design in engineering solutions to "wicked" problems.

University of Victoria, Laboratory Instructor

 Facilitated learning of approximately 400 students in two first year engineering design courses.

University of Victoria, MASc Candidate

 Explored the impacts of Step Code on the cost and energy performance of residential construction projects in Victoria, BC.

Read Jones Christoffersen, Design Engineer

 Involved in a range of projects ranging from building retrofits to product design.

Cali Construction, Skilled laborer

Gained hands-on skills in many aspects of home building

Presentation Structure

- Project Description
- Project Purpose
- Importance to Industry
- Methodology
- Results
- Conclusions (three main take aways)
- Project Limitations

Duration: 15 minutes

I can answer any questions next to the poster that showcases my work

Project Description

- Partnership between the University of Victoria, Read Jones Christoffersen, and MITACS.
- Research was conducted between 2016 and 2017.
 - SCIWG was still finalizing Step Code.
- Case study analysis of asbuilt high-performance building in Victoria, BC.

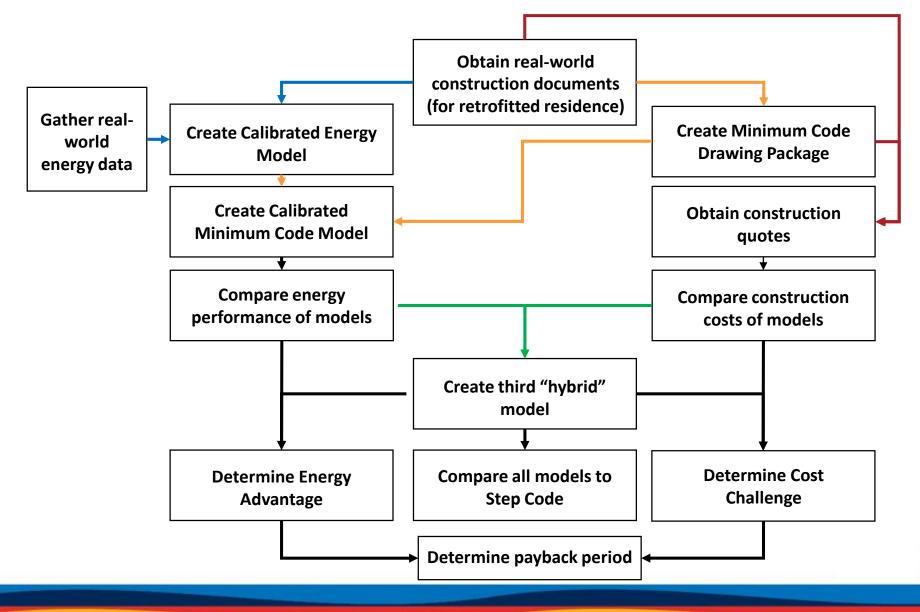
Mitacs

Project Description

Project Purpose

• Explore energy advantage and cost challenge of high performance residences.

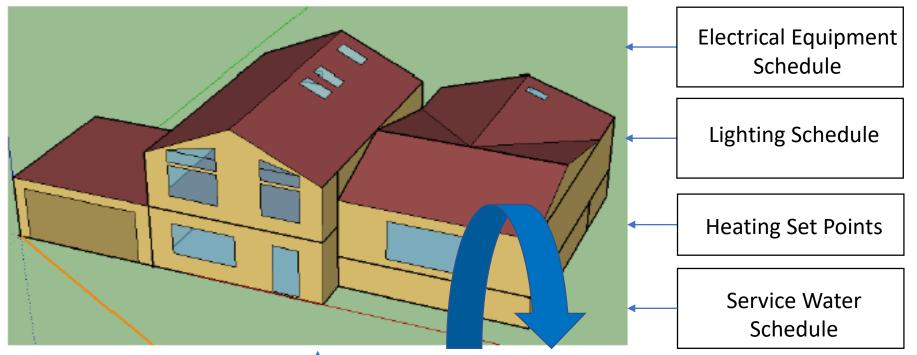
Issues and challenges explored:


- 1. Determine what Step level a case-study residence achieved.
- 2. Explore the energy savings for the case study residence.
- 3. Determine the cost challenge of the case-study residence.
- 4. Explore how long it will take to recoup costs from building to performance tiers.

Project Importance

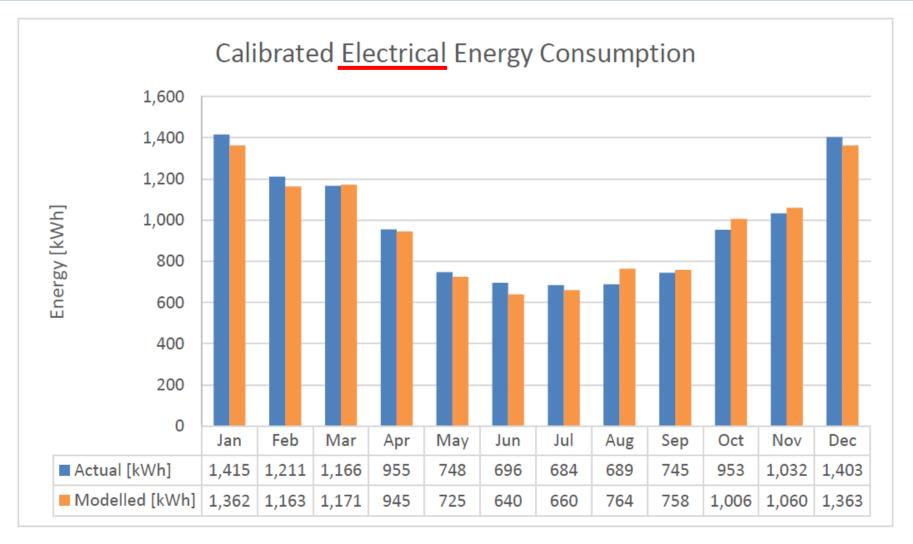
- Research into a new subject area.
 - limited research had been done on this subject when this project was underway in 2016/2017.
- Benchmark to home builders.
- Real-world cost-benefit analysis.

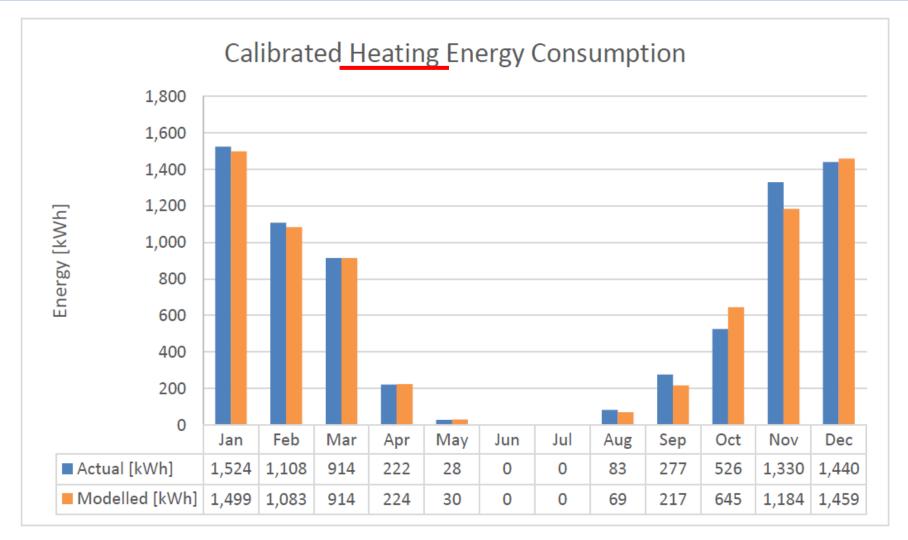
Methodology

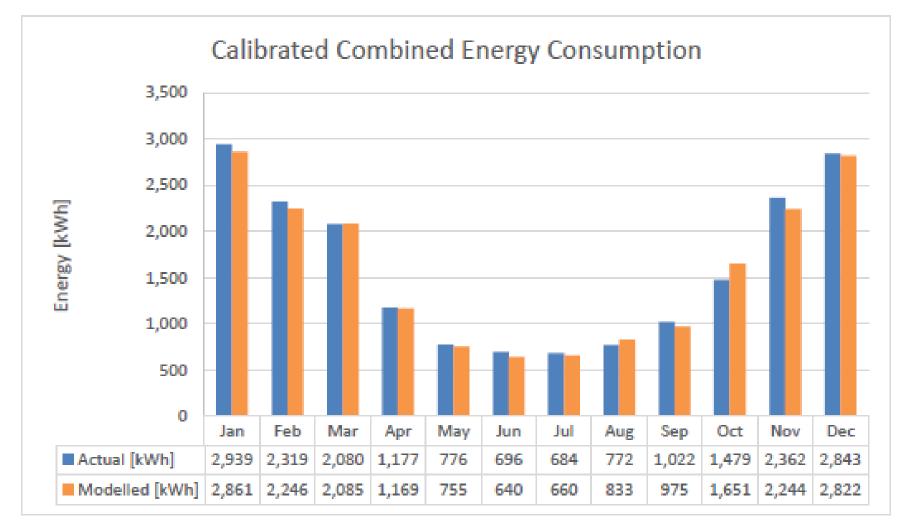


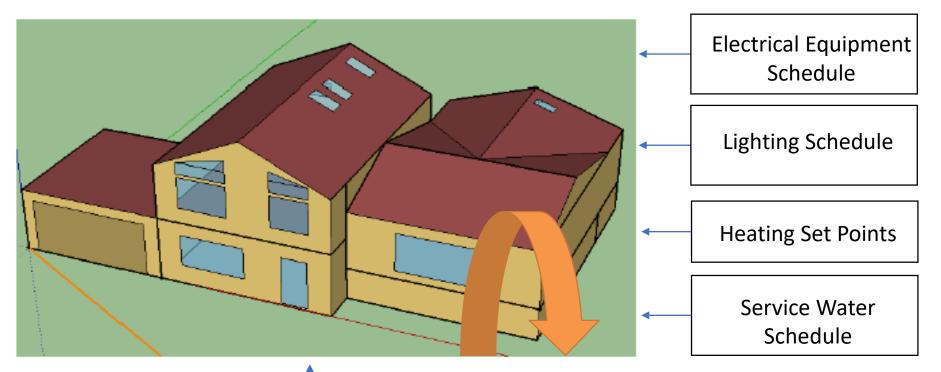
Building Orientation

Construction Sets

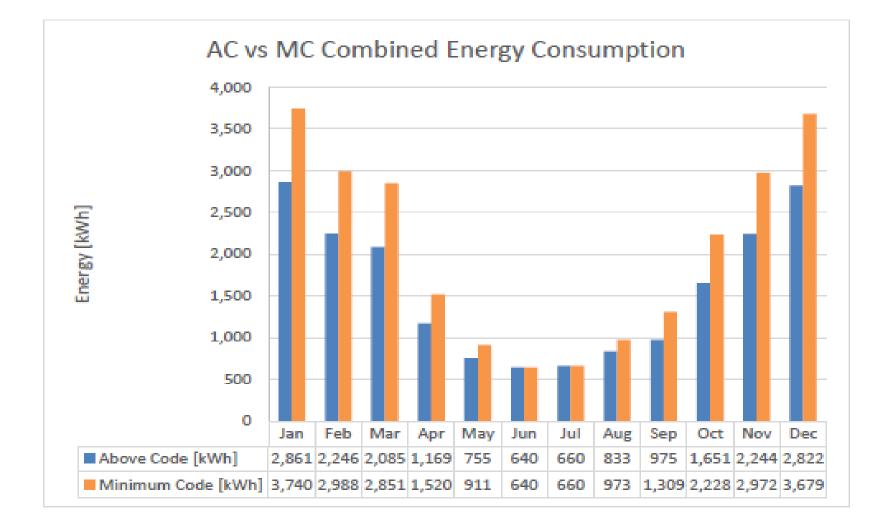

Air Tightness

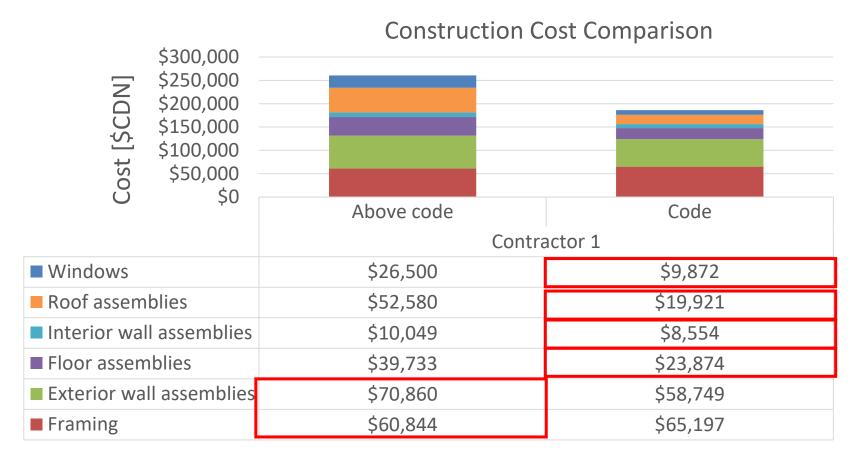

(blower door test)

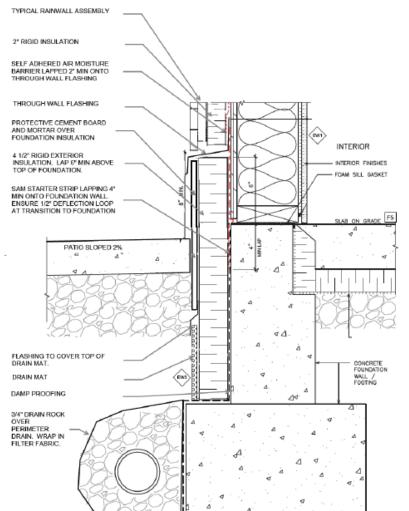


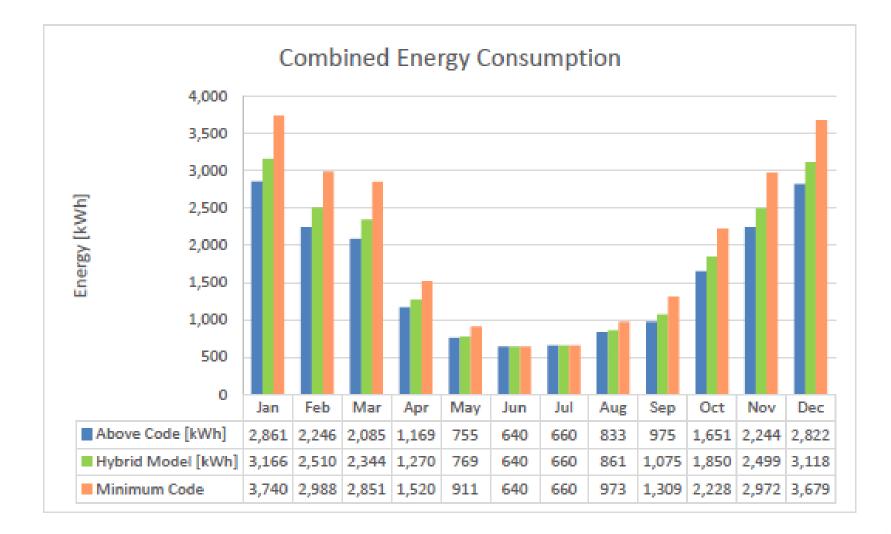

آـــــــــــــــــــــــــــــــــــــ	Assembly	RSI - Modelled	RSI - Calculated	% Diff
]	EW1	3.82	3.8	-0.52
	EW2	3.63	3.73	2.75
]	R1	6.44	6.32	-1.86
	R2	5.85	5.84	-0.17
	***		10 L 11 A	

*Note: Window U-values were specified within OpenStudio






Building Orientation		Assembly	RSI - Modelled	RSI - Calculated	% Diff	
Construction Cots		EW1 - Typical exterior walls	2.76	2.78	-0.72	
Construction Sets		EW2 - Insulated foundation walls	1.91	1.99	-4.19	
Air Tightness		R1 - Cathedral roof and garage roof	4.7	4.67	0.64	
BCBC Code Minimums	•	R2 - Typical trussed roof	6.94	6.91	0.43	7


CONSTRUCTION COST COMPARISON EXCLUDING \$183,340 IN FIXED COSTS

Cost Challenge: \$7,759

EW	/1	EXTERIOR WALL 2X4		R	
1	F	NISH TO OWNERS SPECIFICATION	0 00	0 00	
2	1/	2" GYPSUM WALL BOARD	0 08	045	
3	2)	K4 STUDS	0 00	0 00	
4	3	193	109		
5	1/	011	0 62		
6	S	0 00	0 00		
7	2	ROXUL COMFORTBATT IS	141	801	
8	1/	2" RAINSCREEN/CAPILLARY BREAK	0 17	0 97	
9	W	0 10	0 57		
EF	EFFECTIVE RSI/ R VALUE OF ENTIRE ASSEMBLY 3 80 2				

E	W3	EXT. WALL - 6" CONC. WALL	RSI	R
1	D	JROCK CEMENT BOARD	0.07	0.39
2	D	ORKEN "DELTA-DRAIN" DRAINBOARD	0.05	0.28
3	4.	5" ROXUL COMFORTBOARD 80 INS.	3.17	18.0
4	S	OPREMA COLPHENE LM 300 MEMBRANE	0.00	0.00
5	6"	CONCRETE FOUNDATION WALL	0.20	1.15
EF	FEC	TIVE RSI / R VALUE OF ENTIRE ASSEMBLY	3.49	19.8

	Cost Challenge [\$]	Energy Advantage [kWh]		
ACR	\$85,278.50	5500		
HR	\$7,759.00	3711		

67% of the Energy Advantage for 9% of the Cost Challenge

	Step Level	Energy Modelling	Airtightness	Mechanical Energy Use	Envelope
Minimum code	Step 1 Enhanced Compliance (BC Building Code Performance)	Required	3.5 ACH ₅₀	BCBC using 9.36.5. or ERS v15 ref. house (MEUI of 80 kWh/m²/year is likely, but not required)	Report on TEDI and PTL (Peak Thermal Load) (TEDI 50 kWh/m ² /year is likely, but not required)
	Step 2 10% Beyond Code	Required	3.0 ACH ₅₀	10% better than ERS v15 ref. house OR MEUI – 60 kWh/m²/year	TEDI – 45 kWh/m²/year OR PTL – 35 W/m²
Hybrid Model Above code	Step 3 20% Beyond Code	Required	2.5 ACH ₅₀	20% better than ERS v15 ref. house OR MEUI – 45 kWh/m²/year	TEDI – 40 kWh/m²/year OR PTL – 30 W/m²
	Step 4 40% Beyond Code	Required	1.5 ACH ₅₀	40% better than ERS v15 ref. house OR MEUI – 35 kWh/m²/year	TEDI – 25 kWh/m²/year OR PTL – 25 W/m²
	Step 5	Required	1.0 ACH ₅₀	MEUI – 25 kWh/m²/year (no ERS option)	TEDI – 15 kWh/m²/year OR PTL – 10 W/m²

Simple Mortgage Case

- Fixed mortgage rate of 3.64%
- Amortization period of 25 years
- Fixed energy costs

	MCR		HR	
Total Building Cost	\$369,5	507.00	\$377,266.00	
Monthly mortgage	\$1,872.25		\$1,911.56	
Yearly energy consumption [kWh]	24472		20761	
energy cost \$/kWh		\$0.11	\$0.11	
Energy cost / yr	\$2,691.92		\$2,283.71	
Energy cost / mn	\$224.33		\$190.31	
HR versus MCR				
Energy savings /m	in		\$34.02	
Additional mortga	ige cost		\$39.31	
Percentage covere savings	ed by energy		87%	

Derived Amortization Equation

$$t_N = \frac{\ln\left[\frac{C_c \ln\left(1+r\right)}{E_A P_{f(0)}} + 1\right]}{\ln\left(1+r\right)}$$

Where:

- t_N = Payback Period
- C_c = Cost Challenge
- E_A = Energy Advantage
- $P_{f(0)}$ = Cost of energy at t = 0
- *r* = Energy cost inflation rate

Conclusions

Three takeaways:

- 1. Step 3 compliance was achieved for an additional cost of \$7,759.
- 2. Energy savings cover 87% of the increase in mortgage costs.
- 3. The myth that you need triple-glazed windows to meet Step-3 performance is not *always* true.
 - Determine this on a case-by-case basis

Limitations

- 1. The "optimization" was fairly limited in its sophistication.
 - Parametric study or Genetic Algorithm could likely improve this model further.
- 2. Amortization time is very sensitive to fuel cost. (*eg.* Electricity vs Natural Gas)
 - This makes energy improvements less appealing from a payback perspective if energy is cheap.

Thank you !

I would be happy to discuss any questions beside my poster presentation.