BCBEC CONFERENCE & AGM NOVEMBER 8, 2019

Vented Roofs: More Venting is Better Right?

Lorne Ricketts | MASc., P.Eng. Principal, Building Science Specialist

Influence of Solar Radiation & Night Sky

A Localized Problem...

High Risk Climate for
 Night Sky Radiation
 Vented Roof Moisture
 Issues

Joist-Insulated Vented Flat Roof

Study Overview

 \rightarrow Task 1: Literature Review

- \rightarrow Task 2: Survey of Roof Renewals
- \rightarrow Task 3: In-Situ Field Monitoring and Testing
- \rightarrow Task 4: Controlled Field Exposure Monitoring
- \rightarrow Task 5: HAM and Energy Simulations
- \rightarrow Task 6: Industry Guidance

Roof Surveying Overview

- ightarrow Survey of roof conditions
- ightarrow 70 projects identified, 37 of which had sufficient data
- \rightarrow Factors evaluated:
 - ightarrow Building location
 - ightarrow Exposure of building
 - ightarrow Indoor humidity / building use / occupant load
 - ightarrow Air barrier strategy
 - \rightarrow Vapour barrier strategy
 - ightarrow Insulation type
 - \rightarrow Ventilation strategy
 - ightarrow Membrane type
 - ightarrow Thermal mass of roof assembly

Roof Surveying – Venting

Ventilation Strategy	Number of Roofs in Sample	Percentage of Sample with Air Leak/Condensation Issues
Not vented	4	0%
Doghouse vents	9	11%
Strip vents	10	EXAMP 20%
Doghouse and strip vents	6	50%

Roof Surveying – Thermal Mass

Factor	Indicator	Number of Roofs in Sample	Percentage of Sample with Air Leak/Condensation Issues
Ballast	Used	12	0%
	Not used	25	28%
Coverboard	Used	12 DD	ΛΕΤ 0%
	Not used	25	28%
"Thermal Mass"	High thermal mass	7	0%
	Low thermal mass	16	38%

Study Sites

MURB in North Vancouver, BC

Roof Sheathing Moisture Content

Roof Sheathing Moisture Content

Roof Sheathing Moisture Content

Building Code Context

\rightarrow BCBC Clause 9.19.1.1

"Except where it can be shown to be unnecessary, where insulation is installed between a ceiling and the underside of the roof sheathing, a space shall be provided between the insulation and the sheathing, and vents shall be installed to permit the transfer of moisture from the space to the exterior"

→ Sensible for roofs without good airtightness, but modern assemblies can provided excellent airtightness, and venting has also been shown to be detrimental in some circumstances

Relative Risk of Wood-Frame Roof Assemblies

Could debate this for hours... and it depends...

Relative Risk of Wood-Frame Roof Assemblies

Could debate this for hours... and it depends...

Relative Risk of Wood-Frame Roof Assemblies

Could debate this for hours... and it depends...

Next Steps

\rightarrow PFT & Airtightness Testing

 11
 12
 13
 14
 15

 26
 27
 218
 219
 310
 311
 312
 33
 314
 315
 36
 317
 318
 31

Sources

RDH

Blower Doors

 \rightarrow Hygrothermal Modelling

Guide to follow!

VENTED ROOFS: MORE VENTING IS BETTER RIGHT?

Discussion + Questions

Lorne Ricketts - Iricketts@rdh.com

Learn more at rdh.com

