Zero Emissions New Buildings Plan

BCBEC June 16, 2016

GREEN BUILDINGS

Lead the world in green building design and construction

Greenest City 2020:

Require all buildings constructed from 2020 to be carbon neutral in operations **Renewable City Strategy:**

100% of energy used is renewable by 2050

New buildings required to use 100% renewable energy by 2030 **or earlier**

New Building GHG Emission Trend

Weighted Average GHG Intensity of New Buildings (all types)

3

Area of New Buildings per Year

2020 Built Area by Building Type (m²)

NZE Building Plan Outline

- 1. Maximum allowed GHG Emissions and Thermal Energy Demand (TEDI) Targets
- 2. City Leadership
- 3. Catalyst Tools
- 4. Capacity Building

Two Pathways to NZE for New Buildings

1. Very efficient building envelopes and ventilation systems

OR

2. Neighbourhood Renewable Energy System connection

Passive House Standard

- Best global standard for efficient building envelopes
- Ensures high levels of effective insulation (inc. windows), air tightness, ventilation heat recovery, and thermal comfort
- Applicable to all building types but limited data for high-rise
- Supported by extensive building science research, design tools, training, and third party validation
- 80% reduction in space heating energy use

1. Reflect GHGI and TEDI in Rezoning Policy and Code

• Time stepped reduction in limits (2016 - 2025)*

Mandatory requirements for all rezonings (Q4 2016):

- Air barrier testing
- Direct ventilation
- Embodied emissions reporting
- Post occupancy performance reporting
 - Thermal comfort

2. CITY LEADERSHIP

- Pursue Passive House (or other zero emission approach) for all viable new "City-led" building projects
- Updated policy for City-led developments requiring zero emissions within 2 years
- Engage other public sector entities re: leadership (other local governments, BC Housing, etc)

3. Catalyst Tools

- Meaningful and clear incentives required to encourage leaders to begin developing zero emissions/Passive House buildings <u>now</u>
- Aim to launch suite of catalyst tools for detached, low-rise MURB and high-rise MURB by Q1 2017
- Brussel's "Batex" Program is starting point. Included regular call for entries, winners judged on GHG reduction, cost effectiveness, neighbourhood fit/appeal, prize = \$13/ft2

Luminaires: Choosing the Right Fixture for the Function

One size does not fit all

building energy exchange

4. CAPACITY BUILDING

- Remove policy barriers
- Fund case study development/sharing
- Public education

Establish an Independent Centre of Zero Emission Building Excellence

- Facilitate workshops, dialogues, peer-to-peer knowledge sharing
 - Curated research library and publication of best practices (design, finance, policy)
- Identify trends

ightarrow

TEDI Limits and Implications for

Building Type	Baseline Requirement	Typical Outcome of Current Requirements		2016 Limits		2020 Limits		2025 Limits	
		GHGI	TEDI	GHGI	TEDI	GHGI	TEDI	GHGI	TEDI
Low-Rise MURB	Code	12.5	50	5.5	35	5	25	0	10
Low-Rise MURB	Rezoning	10.5	42	5	25	4.5	10	0	10
High-Rise MURB	Rezoning	16.5	46	6	32	5	18	0	TBD
High-Rise MURB	RZ & NEU	5.5	46	6	40	5	40	0	TBD

Solutions Based Approach

City of Vancouver – Draft Framework

Why TEDI?

"Thermal Energy Demand Intensity"

- Reduce Envelope Loss
 - Walls
 - Windows
 - Roofs
 - Air Leakage
- Reduce Ventilation Load
 - Quantity Fixed
 - Temperature?
 - Heat Recovery

Ventilation and TEDI

TEDI Limits and Implications for

Building Type	Baseline Requirement	Typical Outcome of Current Requirements		2016 Limits		2020 Limits		2025 Limits	
		GHGI	TEDI	GHGI	TEDI	GHGI	TEDI	GHGI	TEDI
Low-Rise MURB	Code	12.5	50	5.5	35	5	25	0	10
Low-Rise MURB	Rezoning	10.5	42	5	25	4.5	10	0	10
High-Rise MURB	Rezoning	16.5	46	6	32	5	(18)	0	TBD
High-Rise MURB	RZ & NEU	5.5	46	6	40	5	40	0	TBD

2016 Rezoning Limits

The Assembly R-value

TYPICAL BRICK WALL WITH STUD BACKUP - 90mm FACE BRICK - 25mm AIR SPACE (VENT TOP AND BOTTOM) - MASONRY ANCHORS EVERY 400mm O.C. VERTICALLY & 600 mm O.C. HORIZONTALLY - 40mm SEMI-RIGID INSULATION - 13mm EXTERIOR GRADE SHEATHING SEAL PERIMETER AND PENETRATIONS AGAINST MIGRATION OF MOISTURE - 92mm STRUCTURAL STEEL STUDS AT 400mm O.C. - 89 BATT INSULATION (R.S.1. 2.1) - 6mil. POLY VAPOUR BARRIER - 13mm G.W.B. SEALED TOP AND BOTTOM -COULOR YELLOW

The Real World

The Whole Picture

MORRISON HERSHFIELD

BUILDING ENVELOPE THERMAL BRIDGING GUIDE

EM GUIDELINES

- Clear, consistent approach to energy modeling
- Standardizing of some inputs that are outside of the design team control but potentially large impact
- Explicit and detailed guidance on how to calculate heat loss, inclusion of thermal bridging, etc.

EFFECTIVE R-9 IS ACHIEVABLE, BUT...

Effective R-9 Scenarios

Effective R-9 Examples for High Rise MURB

Steel Stud Enhanced case developed for exercise without thermally broken balconies

MORRISON HERSHFIELD

Improved glazing transition

+ Insulation outboard of slab

2016 Scenario 1 – R9 Improved Details, Highly Insulated Walls, Typical Balconies

Heat Loss Components	% Heat Loss
Steel Stud Wall (R25)	34%
Balcony Slab at Sliding Door	26%
Parapet: At Steel Stud Wall	0%
Parapet: At Glazing	0%
Floor: At Steel Stud Wall	0%
Floor: At Steel Stud Wall w/Balcony	20%
Floor: At Glazing	3%
Floor: At Sliding door	0%
Glazing Transition: Window/Door	
Frame	10%
Corner: Inside	0%
Corner: Outside	3%
Interior Wall Intersection: Fire	
Seperation	0%
At grade: Doors	0%
At grade: Steel Stud Wall	2%

2016 Scenario 2 – Improved Details, Modest Walls, Reduced or Thermal Broken Baconies

Heat Loss Components	% Heat Loss
Steel Stud Wall (R15)	57%
Balcony Slab at Sliding Door	14%
Parapet: At Steel Stud Wall	0%
Parapet: At Glazing	0%
Floor: At Steel Stud Wall	0%
Floor: At Steel Stud Wall w/Balcony	7%
Floor: At Glazing	3%
Floor: At Sliding door	0%
Glazing Transition: Window/Door	
Frame	11%
Corner: Inside	1%
Corner: Outside	3%
Interior Wall Intersection: Fire	
Seperation	1%
At grade: Doors	1%
At grade: Steel Stud Wall	3%

Effective R-9 Scenarios

Effective R-9 Examples for High Rise MURB

Precast Concrete Enhanced details without thermally broken balconies

Improved glazing transition

+ Insulation outboard of slab

Effective R-9 Scenarios

Effective R-9 Examples for High Rise MURB

Window Wall Enhanced case developed for exercise without thermally broken balconies

Improved Deflection Header

2020 and Beyond

- Push to Triple Glazing
- Pressure on some of the following
 - Increased air tightness
 - Higher effective R-values
 - Non conductive frames/higher performance windows
 - Lower glazing ratios
 - Heat recovery efficiency and applicability

RENEWABLE CITY STRATEGY

2015-2050

