Design Considerations – Roof Insulations

Josh Jensen, AScT, CHI, RRO, RRC

 \checkmark Many types of roof insulations available on the market

- \checkmark All have different use within a system
- \checkmark How do you compare them?

- \checkmark Every product has a technical data sheet
- \checkmark Tech data sheets typically have numbers
 - Are bigger numbers better?
 - Manufacturers that post pass / fail? What does this mean?
- Essentially to compare you often must understand the test behind the numbers, and realize not all companies reference the same test method.

 \checkmark Key technical information provided, which we will review

- Compressive strength
- Water Absorption
- Dimensional Stability

Design Considerations

✓ Standards

- Specification Standard
 - Used to outline minimum performance criteria
 - References testing standards to test materials to meet the criteria within the specification standard
- Testing standard
 - Outlines testing apparatuses and methodology

- ✓ Materials compared
 - Products that are newer to the market place
 - Often mistakes seen
 - Products with changing standards
- ✓ Rigid Mineral Wool Insulation
- ✓ Polyisocyanurate Insulation Glass Faced

- Mineral Fibre Roof Insulation Boards
 - ASTM C 165 Testing Standard Standard Test Method for Measuring Compressive Properties of Thermal Insulations
 - Outlines two test methods: A and B
 - Test method A is for Insulations with a straight-line load curve
 - Test Method B is for thermal insulations that become increasingly more stiff as they are compressed
 - Technical data sheet does not outline which method used, However does state that it is for at 10% or 25%, these percentages refer to compression / deformation.
 - Normal Values are 11PSI @10%, 15PSI at 25% for entire board
 - Information for top layer only also provided at 20PSI at 10% or 37PSI at 25%

- Polyisocyanurate Roof Board Insulation
 - ASTM D 1621 Testing Standard Standard Test Method for Compressive Properties of Rigid Cellular Plastics
 - Single test method
 - Complete load deformation curve used to compute effective modulus of elasticity
 - 2 out of 8 manufacturers refer to their compressive strength was "10% consolidation"
 - Vertical Compressive Strength is typically measured at 10% deformation on roof insulations. Many of the products will creep over the long term, and therefore require adequate safety factors.
 - Normal Minimum values are 20PSI

- Mineral Fibre Roof Insulation Boards
 - ASTM C 209 Testing Standard Standard Test Methods for Cellulosic Fiber Insulating Board
 - Mineral Fibre Roof Insulation Boards do not contain Cellulosic Fibres, however, the Specification Standard for Mineral Fibre Roof Insulation Boards ASTM C 726 references this standard for water absorption.
 - Involves submerging a sample under a 1" head of water for 2 hours.

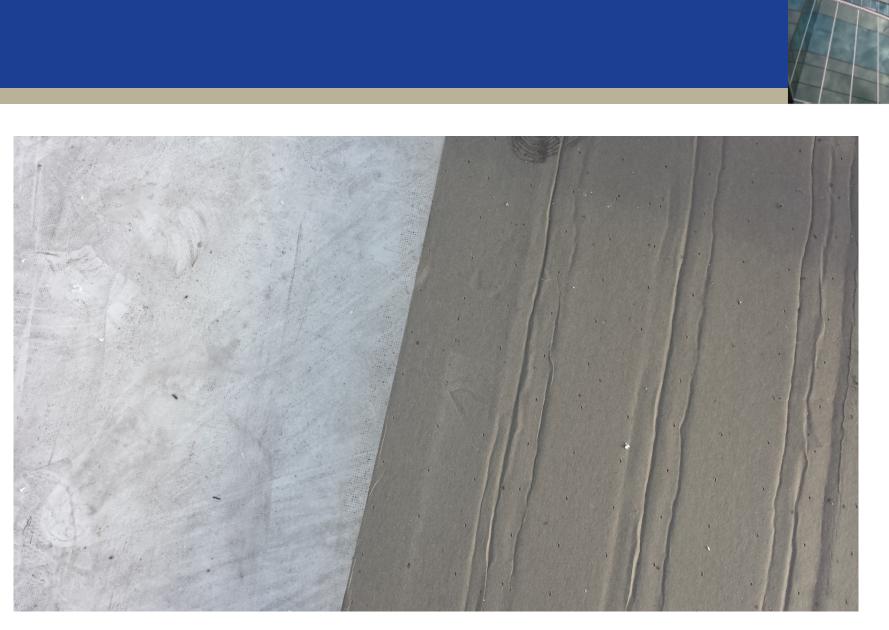
- ✓ Polyisocyanurate Roof Board Insulation
 - ASTM C 209 Testing Standard Standard Test Methods for Cellulosic Fiber Insulating Board
 - 7 out of 8 Manufacturers Reference this standard
 - Not realistic in terms of terminology of the test standard but this standard is referenced in the ASTM C1289 - Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board
 - Normal Result is <1%
 - ASTM D2842 Testing Standard Standard Test Method for Water Absorption of Rigid Cellular Plastics
 - 3 out of 8 Manufacturers Reference this standard. All 3 of these have plants in Canada.
 - This test involves submerging the board in a 2" head of water for 96 hours.
 - Normal Result is <3.5%
 - A note in the standard recognizes that many products will continue to absorb water after the 96 hour time period if left submerged.

- ✓ Mineral Fibre Roof Insulation Boards
 - ASTM C 356 Standard Test Method for Linear Shrinkage of Preformed High-Temperature Thermal Insulation Subjected to Soaking Heat
 - Not included in the specification standard C726.
 - Is for insulations that will see normal hot side temperatures in excess of 93°C.
 - Determines the linear change that occurs after the insulation has been heated for 24 hours
 - Normal results are <=0.75%
 - ASTM D2126 Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
 - Included in the specification standard C726
 - The test method outlines the methodology of testing and not the conditions the material is to be subjected to.
 - Results in difficulty in comparing materials if different conditions are chosen by the manufacturer.
 - Normal results are <=0.1%

- Polyisocyanurate Roof Board Insulation
 - ASTM D2126 Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
 - Included in the specification standard C1289
 - The test method outlines the methodology of testing and not the conditions the material is to be subjected to.
 - Results in difficulty in comparing materials if different conditions are chosen by the manufacturer.
 - Some manufacturers specify the test was over 7 days others do not, the minimum limits are outlined in the specification standard.
 - Standard Limits shown is <2%

Associated math

- Mineral Fibre Roof Insulation Boards
 - Typical calculation performed:
 - 0.1% x48 = 0.05"
- Polyisocyanurate Roof Board Insulation
 - Typical calculation performed:
 - 2%x 96 = 1.92"
- Enough? Too much?
 - So if you take and butt 2 96" boards together, and expect the board to shrink the maximum to the centre of the board you can expect an almost 2" gap between boards on the long dimension.
 - This is one of the reasons having two layers of insulation with staggered and offset joints is so critical.
 - Experience has shown gaps in the field of up to 1"





✓ Questions?

