#### Osmosis and Blistering of Liquid Applied Waterproofing Membranes – What We Have Learned in the Past Decade

BCBEC CONFERENCE & AGM – SEPT 14, 2016

**GRAHAM FINCH**, MASC, P.ENG – PRINCIPAL, BUILDING SCIENCE RESEARCH SPECIALIST



## Outline

- → Background & History of Blistering Membranes
- $\rightarrow$  Review of Theories and Proving the Failure Mechanism
- $\rightarrow$  Ongoing Membrane Evaluations and What to Look for

#### 2004 - Tip of the Iceberg & Roof Warranty Reviews

Asphalt Modified Polyurethane Waterproofing over

**Concrete Roof Deck** 

Saturated

### Water Filled Blisters Below Waterproofing

Membrane Cut & Water Released from Blister

# Water Below Roof Membrane & Reported Intermittent Leaks

Lots of water below the membrane

### **Problematic Roof Assemblies Affected**





- → Concrete Pavers, Ballast, or Dirt/Green Roof
- → Pedestals (optional)
- → Filter Fabric
- → XPS Insulation (optional, only over heated space)
- → Drainage Mat (optional)
- → Liquid membrane
- → Concrete roof slab

Blistering observed over both conditioned (interior) and unconditioned space (parking garages), within planters, green roofs, and water features

### 2004 – Digging into the Problem

- → Failures uncovered during regular reviews at many local building projects – all similar membranes and assemblies over concrete podium or roof/deck slabs
- → Cause of the blistering unknown at the time
  - → Apparent correlation with membrane thickness
  - → Initial monitoring & research started





#### 2004 - Membrane "Blistering Index"

Waterproofing Membrane Thickness & Age vs. Blistering Index

RDH



Membrane Thickness, min-max (mils)

## 2008 - The Problem Grows...

## Blisters Everywhere you Dig!

### Gallons of Water Beneath Membranes

In a subscription of the second s

## Leaks & Membrane Renewals

## Membrane Blisters Lifting Pavers & Leaks



## Membrane Blisters Lifting Pavers & Leaks

### **Membrane Water Beds!**



#### 2008 - Updated Blister Index

#### Waterproofing Membrane Thickness & Age vs. Blistering Index



Membrane Thickness, min-max (mils)

- → Systemic issue affecting asphalt modified polyurethane waterproofing membranes in protected membrane roofs over concrete decks
  - → 2 similar asphalt modified membranes from 2 major manufacturers identified in majority of cases (plus few others)
- → Findings Water Filled Blisters
  - → Membranes 3 to 15 years old with blisters
  - → Membranes 30-60 mils, some up to 120 mils
  - → Blisters filled with water under pressure
  - → Blisters range from penny size to entire roof deck areas
  - → No obvious detail or discontinuity
  - $\rightarrow$  Top of membrane almost always wet
  - → Ability to lift pavers, expand/grow over time

## Theories & Urban Legends

#### **Industry Perception Pre 2008**

- → Many hypotheses and strong opinions as to the blistering mechanisms
- → Little building science understanding or research
   – lots of speculation
- → Blame fell to many roofers and the liquid membrane manufacturers
- → Reports of problems outside of the Lower Mainland & beyond North America



#### Theory #1: Pinholes in Thin Membrane



#### Theory #2: Hydrostatic Head from Details **Theory**



### Theory #3: Vapor Diffusion from Inside

RDH

#### **OUTDOORS**



**INDOORS** 

#### Theory #4: Diffusion & Capillary from Outside **RDH**

#### **OUTDOORS**



#### **INDOORS**

→ Osmosis developed as a possible hypothesis after debunking all other options

- → Osmosis is the flow of water across a semi-permeable membrane from the side of low to high salt (solute) concentration
- → Requires 2 things:
  - → Difference in salt concentration (i.e. solute, dissolved metals)
  - → A membrane permeable to water molecules, with a pore structure too small for most dissolved solids to pass

#### What is Osmosis?



#### **Osmosis**:

Water flows through membrane from lower to higher dissolved salt lon concentration

### **Osmosis in Other Applications**

- → Not well documented by
  building/roofing industry
  → Either rare or unreported
- → Other industries:
  - → Fiberglass boat hulls
    - Uncured resins create chemical osmotic cell
  - → Epoxy Floor Coatings
    - Moisture from slabs-ongrade create blisters beneath flooring systems
  - → Bridge decks
    - De-icing salts cause blistering of coatings





### Could it Be Osmosis?



- $\rightarrow$  Research Questions to Answer:
  - → Is the blister water salty/contain dissolved solids?
  - → What is the osmotic pressure difference between rainwater and blister water?
  - → Is the waterproofing membrane semi-permeable?
- → Industry resources available
  - → Reverse Osmosis filter industry formulas/calculators for reverse osmosis system pressures based on dissolved salt concentrations
  - → Visual/ microscope & vapor permeance testing (ASTM E96) for relative permeability of membrane

## Water Extraction For Testing

### Is the Blister Water Salty?

- → Blister water extracted from blisters of several roofs & sent to 3rd party water testing lab
- → Blister water below membrane above concrete found to contains high concentrations of dissolved minerals
  - → Primarily Sodium and Potassium and traces of Silicon, Boron, Magnesium, Tin, Iron, Calcium, Sulphur and other trace elements (even Uranium!)
  - → From cement, aggregates and admixtures of concrete (and leaching from membrane)
- → Rainwater from ponding water on top of membrane - no relevant concentration of minerals







### What is the Osmotic Pressure Potential?

- → The Osmotic potential is dependant on the Total Dissolved Solids (TDS) not the individual solutes
- → Calculated osmotic suction pressures for various blister water samples extracted in past decade ranges from 300 to over 1400 kPa (44 to 203+ psi)!
  - → Explains why membrane blisters tend to be under some positive pressure
  - → As blisters form and grow, the membrane delaminates – so full pressures are never realized in service
  - → For reference brackish water = 25 kPa
    (3.6 psi), seawater 2500 kPa (363 psi)



## Membrane Removal

#### Is the Membrane Permeable?



#### Membrane #1 - Aged 30 mil moisture cure chemistry, removed from roof









#### Is the Membrane Permeable?



#### Membrane #2 - Aged 60 mil moisture cure chemistry, removed from roof



#### Is the Membrane Permeable?

→ Many manufacturers were in the mid 2000s and still are today reporting ASTM E96 vapor permeance 'dry-cup' values

- → Tested both aged (removed from site) and new (laboratory made) membrane samples for each
- $\rightarrow$  Tested: dry, wet, and inverted wet cup







#### Impact of High Vapor Permeance

- → How does the concrete get wet or water initially get below the membrane to create the osmotic cell?
  - 1. Fresh cast concrete is initially saturated or rained on

- 2. Condensation & liquid water within bug holes and unfilled surface voids below membrane
- 3. Vapor diffusion from topside of membrane until water
  & equilibrium on both sides



#### Impact of High Vapour Permeance



#### How to Measure Osmotic Flow Rate?

- → Dissolved salt/metal ion concentration difference across membrane?
- → Membrane permeable to water?
- → Mechanism of initial wetting?
- → Measure osmotic flow rate directly



Membrane

RDH

waterproofing membrane with salt water from site

▼ √

### Osmosis Test Chamber Concepts & Trials















#### **Osmotic Flow Laboratory Apparatus**



RDH

Osmosis occurs until Pressure within container reaches the Osmotic Pressure



## At Last... Some Results

#### Measured Osmotic Flow – Control Samples



RDH

DAYS FROM START OF TEST

#### Measured Osmotic Flow – Blister Water

#### OSMOTIC FLOW THROUGH MEMBRANE - INFLUENCE OF OSMOTIC PRESSURE POTENTIAL



DAYS FROM START OF TEST

#### New vs Aged Membrane Testing



### Summary: Osmotic Blistering Process





→ Top surface of the membrane wet all year (insulation/dirt/water feature)

- → Moisture moves though the membrane via vapor diffusion
- → Concrete less permeable than the membrane = moisture accumulation
- → Moisture dissolves minerals from concrete
- → Osmosis forms small blisters at localized voids or de-bonded areas of membrane
- → Osmotic pressure grows and continues expanding blisters over time
- → If membrane stays dry then not a problem...

#### Findings – Asphalt Modified Polyurethane Membranes

- → Tested asphalt modified polyurethane membranes found to have serious shortcomings as "waterproofing"
  - Yapor permeance of 30-120 mil membranes typically found to be >5 US Perms when removed from site
  - → Osmotic Flow Rates of 5-12 g/m<sup>2</sup>/day, (up to 20+ g/m<sup>2</sup>/day through some thin and old membranes)
  - Aged/weathered values much worse than initial specified
    - Impacts of alkaline environment and constant wetting?
- → Solutions? Reduce osmotic flow rate through membrane to less than the vapor diffusion drying rate downward through concrete slab then could we be okay?

### Beyond a BC Problem

- → Reports of similar water filled membrane blistering problems reported from all across the world over past decade
- → Tend to hear about more issues in wet and humid climates where water sits on the membrane year-round
  - → West coast Canada/US
  - → Florida & Southern US, Hawaii
  - → New Zealand
  - → Europe & Asia
- → Planters, ponds and other wet roofs particularly problematic







#### New and Ongoing Research

→ Between 2008 and 2016 we have worked with numerous waterproofing membrane manufacturers to address osmosis

- → Measure osmotic flow rate and assess the impacts of thickness, reinforcing, concrete primers, membrane fillers, cure method, different chemistries, etc.
- → Have tested many alternate non-asphalt based membrane chemistries & membrane types (cold-applied)
  - 2 component & single component chemistries
  - Polyurethanes (asphalt and non-asphalt modified)
  - Polyureas
  - Polyesters
  - PMMAs
  - Asphalt Emulsions
- → Continued testing of original two membrane offenders & other membranes applied in past decade (litigation and R&D)

#### Updated Osmosis Test Procedure & Targets

- > Key Membrane Performance Attributes
  - → Vapor Permeance Inverted wet cup result (<0.1 perms, want this as low as possible)</p>
  - → Osmotic Flow Rate measure by apparatus with control blister water solution for several months (<0.1 g/m<sup>2</sup>/day, want this to be less than can dry through concrete slab)
  - → Water Absorption soak it until it stops & not degraded (<1% ?)</p>



#### What About Polyurea Membranes?

VARIOUS POLYUREA MEMBRANES (7 TYPES) AVERAGED OSMOTIC FLOW RATES



### What About Polyurea Membranes?

| Membrane<br>Sample<br>Name | Membrane<br>Thickness:<br>Average,<br>mils<br>Range, mils | Osmotic Flow<br>Rate<br>Average,<br>g/m²/day<br>Range, g/m²/day | Water<br>Absorption - % &<br>Time to Reach<br>Equilibrium | Inverted Vapour<br>Permeance as<br>Measured:<br>US Perms |
|----------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| Grey                       | 83                                                        | 2.9                                                             | 1.5%, <7 days                                             | 1.4 US Perms                                             |
| Brown                      | 78                                                        | 2.0                                                             | 2.0%, <7 days                                             | 2.2 US Perms                                             |
| Beige                      | 83                                                        | 2.3                                                             | 1.6%, <7 days                                             | 1.2 US Perms                                             |
| Grey 2                     | 135                                                       | 2.9                                                             | 0.6%, <7 days                                             | 1.9 US Perms                                             |
| Grey 3                     | 34                                                        | 5.3                                                             | 1.3%, <7 days                                             | 3.5 US Perms                                             |
| Orange                     | 106                                                       | 2.3                                                             | 1.2%, <7 days                                             | 1.2 US Perms                                             |
| Green                      | 74                                                        | 2.9                                                             | 1.6%, <7 days                                             | 2.1 US Perms                                             |

**RED = BAD TRAIT, GREEN = DESIRABLE TRAIT** 

#### What About Other Membrane Chemistries?

RDH

| Membrane<br>Sample Name                  | Vapour Permeance of<br>100 mil Standard<br>Thickness:<br>(US Perms) |                     | Water Absorption:<br>% by Mass |                            | Osmotic Flow Rate,<br>Thickness<br>Average, g/m²/day |
|------------------------------------------|---------------------------------------------------------------------|---------------------|--------------------------------|----------------------------|------------------------------------------------------|
|                                          | Wet Cup                                                             | Inverted<br>Wet Cup | At 20 days                     | At 250 days                |                                                      |
| <b>AFU</b> - Asphalt<br>Free Urethane    | 0.08<br>US Perms                                                    | 0.08 US<br>Perms    | 1.6%                           | >4.5% (has not<br>stopped) | ~0.7 (87 mils)                                       |
| <b>PE</b> – Polyester<br>Based           | 0.26 US<br>Perms                                                    | 0.27 US<br>Perms    | 1.3%                           | 0.2%                       | 0.4 (55 mils)                                        |
| <b>PE2</b><br>Two component<br>polyester | 0.31 US<br>Perms                                                    | 0.33 US<br>Perms    | 1.7%                           | 0.8%                       | 0.5 (54 mils)                                        |
| PMMA –<br>Poly methyl<br>Methacrlvate    | 0.27 US<br>Perms                                                    | 0.28 US<br>Perms    | 1.7%                           | >4.4% (has not stopped)    | ~0.8 (65 mils)                                       |

RED = BAD TRAIT, GREEN = DESIRABLE TRAIT, ORANGE - BORDERLINE

#### What About Asphalt Emulsions?

 20% absorption by weight after 210 days and still rising, 20% measured swelling

- Osmostic flow rate: ~5.4 g/m<sup>2</sup>/day
- Inverted wet cup permeance 0.14 US perms for 121 mils

#### **EFFECT OF MEMBRANE PRIMER TYPE - POLYURETHANE VS EPOXY**



Days from Start of Test

#### Comparison of Test Results to Date

#### Inverted Wet Cup Vapour Permeance vs Osmotic Flow Rate - All Samples



New Various Chemistries - Unknown Long Term Performance

#### Comparison of Test Results to Date



- Old Asphalt Modified Polyurethane Membranes From Blistered Roofs
- New Asphalt Modified Polyurethane Membranes Unknown Long Term Performance
- New Various Chemistries Unknown Long Term Performance

### Key Findings & Recommendations

→ Avoid use of cold applied membranes over concrete in a protected roof or environment where top of membrane will be wet (roof, pond, split-slab, planter etc.)

- → Be very careful of new membranes marketed for "green concrete" as tend to be worse (higher vapor permeance)
- → Not just an asphalt modified membrane problem affects all waterproofing types – be careful with polyureas, polyurethanes, polyesters, PMMAs etc.
- → Where "hands-tied" keep water from getting down to the waterproofing (supplemental drainage above insulation)
- → Stick to tried and true fully adhered impermeable membranes like: hot rubber, 2-ply SBS, built-up asphalt etc.

#### Recommendations

- → Desired inverted wet cup vapor permeance to be less than 0.1 US Perms (<6 ng/Pa s m<sup>2</sup>)
- → Few manufacturers report inverted wet cup, usually just wet cup (Procedure B) (or worse still dry cup, Procedure A)
  - → Inverted wet cup values typically 10 to 50% higher than wet cup and can be many times higher than dry cup values
- → Review technical data sheets & ask manufacturers for data (some even have osmosis testing information)
- → Watch for red flags & odd unit conversions



#### Next Steps



- → Need for a cold-applied solution & product that works!
- → Need for waterproofing industry champion to push revision to current industry standards (ASTM C836 and/or withdrawn CAN/CGSB-37.58-M86)
  - → Include a maximum inverted wet cup permeance and prolonged absorption rate) and bring forth requirements for resistance to osmotic flow
  - → Test new and accelerated aged samples with consideration for weathering and submersion within wet concrete alkaline environment
- → Hopefully no more problems?!

### **Discussion + Questions**

gfinch@rdh.com – 604-873-1181 → rdh.com

