Structural and Hygrothermal Field Monitoring of Thick Continuously Insulated Wall Assemblies Utilized in a Multi-Story Residential Building

Gary Parsons – The Dow Chemical Company
Jeff Hansbro - The Dow Chemical Company
Craig Buck - The Dow Chemical Company
Scott Croasdale - JRS Engineering
Joel Schwartz - JRS Engineering

Agenda

- Continuous Insulation
- Vancouver BC Case Study
- Retrofit Structural Design
- Measurements
- Conclusions
Continuous Insulation Hypothesis

- A ci rain screen wall system with:
 - 7/8” Z-girts located 16” oc
 - Attached outboard of insulation with 4 ½” #10 self tapping corrosion resistant screws every 6” oc
- Provides a structurally robust wall
- Dimensionally stable
- Complies with ASHRAE 90.1

Vancouver BC Case Study – Before

Original Wall System
- Cement stucco with wire lath
- Semi-rigid fiberglass insulation (~ one inch thick)
- 3½ inch steel studs with fiberglass batt insulation infill
- Polyethylene air/vapor barrier
- ½ inch interior drywall
Vancouver BC Case Study – After

New (Rehabilitated Wall System)

- ⅜ inch acrylic stucco on paper backed lath
- ⅜ inch Z-girts at 16 in oc fastened with self-tapping screw fasteners at 6 in oc
- 3 in Type 4 rigid insulation (R15) with taped joints
- SA Membrane
- ½ inch fiberglass faced exterior gypsum sheathing
- Existing 3½ inch steel studs
- Existing ½ inch interior drywall

Structural Design

- Wind and gravity loads are transferred from the exterior through the vertical Z girts to the insulation and back up wall
- Rigid girt spreads gravity and wind load onto rigid insulation
- Gravity load puts a tension load on the fastener since rotation is constrained by insulation (fastener cannot rotate unless foam compresses) and a shear load
- Wind and gravity put a compression load on the rigid insulation or tension load on fastener
Scott to summarize into 1 or 2 slides
u369852, 29/02/2012
Background Work

- **Why are we comfortable doing this?**
- **What has Dow done in the past?**
 - Dow/Knight Kishwaukee College (see case study) plus others in design and construction.
 - “Strategies to Successfully Meet the New Energy Codes Using Foam Plastic Continuous Insulation” Jeff Hansbro, Dow Chemical
 - “Requirements for attaching Thermax ci Exterior Insulation and 3 Coat Stucco Cladding to Steel Stud Walls” TER Report – Dow Building Solutions & Jay Crandall, ARES Consulting
- **What has JRS done in the past?**
 - Burien Towne Square in Washington State, Several wood framed buildings, similar roof systems (metal over continuous XPS or polyiso), testing with Knight Wall

Validated Finite Element Modeling

1.55” PIR ci exterior insulation - Fastener Spacing : 16” on edge, 16” on field

Failure criteria for CAE: max. displacement = 1” at any point on the insulation (air leakage results in pressure drop in test)

- Max pressure: Test – 67 MPa
- CAE – 76 MPa

Displacement, in
Research Questions

- What is the dimensional performance of a retrofit wall system designed with only cladding attachment screw penetrations through the insulation?
- What is the hygrothermal performance of the system?

Measurement – Instruments

Displacement
- BI Technologies Model BI-404 linear displacement sensors
- Accuracy 0.085 mm +/- 5%

Hygrothermal
- Relative Humidity Sensor Humirel HTM2500
- CANTHERM MF52 Thermistor
Measurement–Location and Installation

N Elevation

Y Direction Measurements

Vertical Displacement (2nd floor, North)
Y Direction Measurements

Vertical Displacement (2nd floor, South)

- Range 0.9 mm
- Range 0.5 mm
- Delta 0.5 mm

X Direction Measurements

2nd floor, South

- Range 0.9 mm
- Range 0.4 mm
North Facade vs. South Facade

Vertical Displacement Measurements of N and S Panels

Thermal Expansion, Correlation to CTE

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficient of Thermal Expansion (mm/K)</th>
<th>Coefficient of Thermal Expansion (in/°F)</th>
<th>ΔT=35°C ∆L over 1.2m (48")</th>
<th>ΔT=22°C ∆L over 1.2m (48")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar (Stucco)</td>
<td>(7.3-13.5) x 10^-6</td>
<td>(4.1-7.5) x 10^-6</td>
<td>0.3mm-0.55mm</td>
<td>0.19mm-0.36mm</td>
</tr>
<tr>
<td>Steel</td>
<td>13.0 x 10^-6</td>
<td>7.2 x 10^-5</td>
<td>0.54mm</td>
<td>0.34mm</td>
</tr>
<tr>
<td>XPS, Polyiso, EPS</td>
<td>62.7 x 10^-5</td>
<td>35 x 10^-5</td>
<td>2.63mm</td>
<td>1.65mm</td>
</tr>
</tbody>
</table>
Displacement vs Temperature

Correlation coefficient = 0.18

Displacement vs Temperature

Correlation coefficient = 0.19
Displacement vs Temperature

Correlation coefficient = 0.14

Hygrothermal Performance

North Wall
Hygrothermal Performance

Conclusions

- The ci rain screen system is a structurally robust wall and complies with ASHRAE 90.1.
- X,Y,Z displacement ranges are negligible and not dependent on measurement location.
- Temperature-displacement correlation is poor.
- Hygrothermal performance confirmed to be good, with low condensation risk.
- No stucco performance problems have been reported to date.
Future Work

- More thorough understanding of temperature observations
- Research expected movement of foamed plastic insulation due to differential temperature conditions and under restraint.
- Establish structural design parameters for designing rigid foam to support cladding and to withstand compression and bending loads that will vary depending on the design approach taken.

Thank You