

Presenter: Harold Louwerse, BTech, RRO Building Science Consultant

BCBEC AGM 2015

September 23, 2015

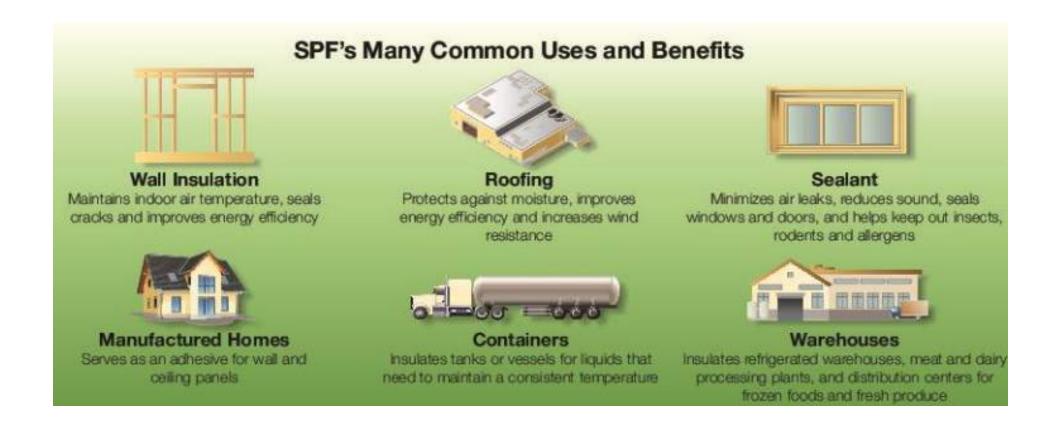
What we will cover today

- What is Spray Foam?
- Different types of "spray foam" available on the market today
- The benefits and challenges of using spray foam
- Building code and Applicable Standards
- Troubleshooting Tales from the field
- Changes coming to the industry
- SPF Quality Assurance Programs

Scary Stuff?

After this presentation, you no longer need to feel afraid....

...Spray foam does not need to be scary stuff.



What is Spray Polyurethane Foam?

SPF Common Uses

The many names of Spray Foam

SPF

ccSPF/ocSPF

SAPF

SPFI

SPUF

SAPUFI (ok I made this one up)

What is Spray Foam

Foam Sealant vs. Foam Insulation

Types of Open Cell SPF

- Open-Cell Spray Foam Sealant
 - 1 component 18-30 oz. cans
 - 2 component propane tank style

 2 component – commercial equipment – ½ lb light density foam insulation

Open Cell Foam Insulation - 1/2 lb Density

Open Cell Foam Insulation - 1/2 lb Density

1/2 lb – Light Density Foam Insulation

- Density 0.4 to 0.7 lb/ft3
- R-value R 3.4 to 4.0 per inch (refer to published **LTTR** charts).
- Interior use only
- Good acoustic qualities (STC 39)
- Expands about 100 times from its liquid state
- Up to 12" per pass
- White in colour
- NOT A VAPOUR BARRIER!

Types of Closed Cell SPF

- Closed-Cell Spray Foam Sealant
 - 1 component 18-30 oz. can
 - 2 component propane tank style

2 lb – Medium Density Foam Insulation

Closed-Cell Spray Foam Insulation

2 component – commercial equipment – 2lb medium density foam insulation

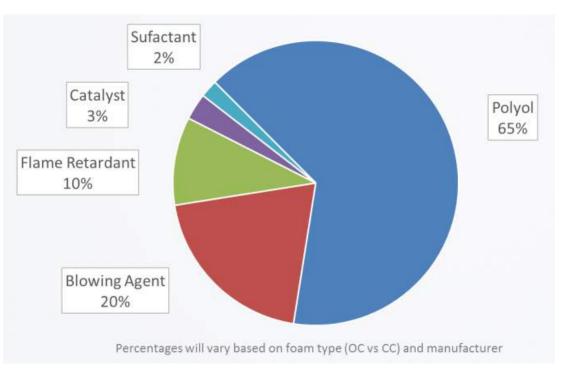
2 lb – Medium Density Foam Insulation

- Density 1.8 to 2.3 lb/ft3
- R-value R 5.0 to 6.7 per inch (refer to manufacturer's published **LTTR**).
- Interior or exterior use (can be left exposed up to 6 months) – outer skin changes colour when left exposed to UV.
- Expands 30 40 times from its liquid state
- Maximum 2" per pass
- Colour varies per manufacturer

Two Component SPF Composition

Side A: Isocyanate (Iso)

Side B: Polyol (Resin) material


Polyols - 65%,

Surfactants - 2%,

Catalysts - 3%,

Blowing Agents - 20%,

Fire Retardants - 10%

B Side Composition

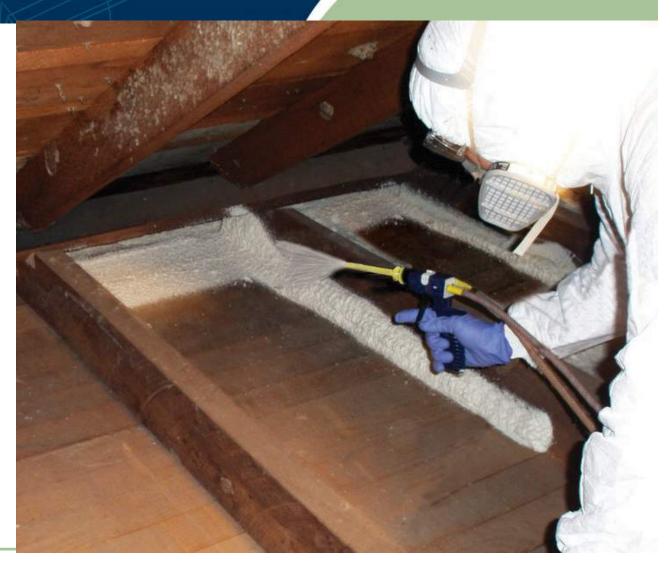
Note: Percentages will vary based on OC/CC and Manufacturer

3 lb – High Density Foam Insulation

- Density 2.5 3.2 lb/ft3
- R-value R 6.0-7.0 per inch (refer to manufacturer's published **LTTR**).
- Exterior use roofing only (should be covered almost immediately)
- Should be covered with a tough, elastomeric waterproof coating
 - e.g. polyurea, silicone, s, etc.
- Expands 10-20 times from its liquid state
- No Canadian material or installation standards

3 lb – High Density Foam Insulation

So where should I specify/use foam sealants?



Voids, Gaps, Cracks but not full cavities

That Burning Question

Can I use a foam sealant as a foam insulation?

Speaking of Burning

Code Requirements

Part 9 Foamed Plastic Insulation

- 9.10.17.10.1) ...foamed plastics which form part of a wall or ceiling assembly ... shall be protected from adjacent space in the building, other than adjacent concealed spaces within attic or roof spaces, crawl spaces, and wall assemblies, by
 - a) one of the interior finishes described in Subsections 9.29.4 to 9.29.9
 - b) sheet metal mechanically fastened to the supporting assembly independent of the insulation and having a thickness of not less than 0.38 mm and a melting point not below 650°C, provided the building does not contain a Group C major occupancy, or
 - c) any thermal barrier that meets the requirements of Clause 3.1.5.12.(2)(e).
- 9.33.6.4.5) Except as provided in Sentence (6), foamed plastic insulation shall not be used as part of an air duct or for insulating an air duct.
- 9.33.6.4.6) Foamed plastic insulation is permitted to be used in a ceiling space that acts as a return air plenum provided the foamed plastic insulation is protected from exposure to the plenum in accordance with Sentence 3.1.5.12.(2)

NBC 3.1.5.12

- 3)<u>Combustible</u> insulation ..., is permitted in the exterior walls of a <u>building</u> required to be of <u>noncombustible</u> <u>construction</u>, provided the insulation is protected from adjacent space in the <u>building</u>, ..., by a thermal barrier consisting of
- a) not less than 12.7 mm thick gypsum board mechanically fastened to a supporting assembly independent of the insulation,
- b) lath and plaster, mechanically fastened to a supporting assembly independent of the insulation,
- c) masonry,
- d) concrete, or
- e) any thermal barrier that meets the requirements of classification B when tested in conformance with the
- ²⁴ CAN/ULC-S124 Standard

NBC 3.2.3.8

- 1)Except as permitted by Sentence (3) and in addition to the requirements of Sentences 3.2.3.7.(2), (3), (5) and (6), foamed plastic insulation used in an exterior wall of a building more than 3 storeys in building height shall be protected on its exterior surface by:
- a) concrete or masonry not less than 25 mm thick or,
- b) noncombustible material that complies with the criteria for testing and the conditions of acceptance stated in Sentence (2) when tested in conformance with CAN/ULC-S101, "Fire Endurance Tests of Building Construction and Materials."

SPF with thermal barrier

Applicable Standards

Reference Standards

- In Canada, the manufacturing and installation of light and medium density spray-applied polyurethane foam insulation is governed by the following standards:
- CAN/ULC-S705.1-15 Standard for Thermal Insulation Spray Applied Rigid Polyurethane Foam, Medium Density – Material Specification
- **CAN/ULC-S705.2-05** Standard for Thermal Insulation Spray Applied Rigid Polyurethane Foam, **Medium Density** Application
- CAN/ULC-S712.1-10 Standard for Thermal Insulation Light Density, Open Cell Spray Applied Semi-Rigid Polyurethane Foam – Material Specification

These standards are referenced in the NBC, BCBC and VBBL.

Future Additional Standards

In the near future (within 5 years?) the following standards will also be applied

- CAN/ULC-S712.2, Standard for Thermal Insulation Light Density, Open Cell Spray Applied Semi-Rigid Polyurethane Foam - Installation. (Under development by ULC/SPF Task Group)
- CAN/ULC-S718-13, Site Quality Assurance Program for Spray Polyurethane Foam

These standards are **not** currently referenced in the NBC or BCBC or VBBL.

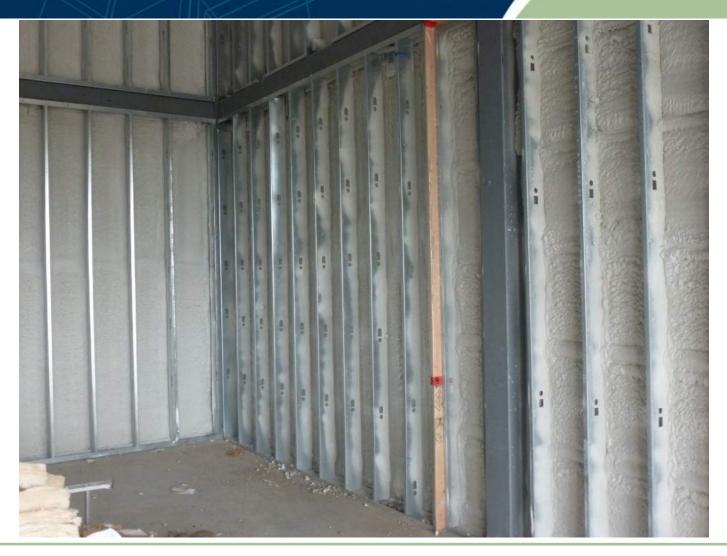
Product Approvals

SPF Applications and Troubleshooting

Site Conditions / Substrate Preparation

- Relative Humidity
- Wind
- Temperature Difference (Between Ambient and Substrate)
- Different SPF formulations for temperature (vary by manufacturer)
- Substrate preparation
 - Wood MC less than 19%, clean and dry
 - Concrete cured 28 days, dry, clean/free of form oils
 - Bare Steel remove oil and rust, clean and prime
 - Galvanized, Stainless, Aluminum, PVC wash w/ mineral spirits, dry and prime

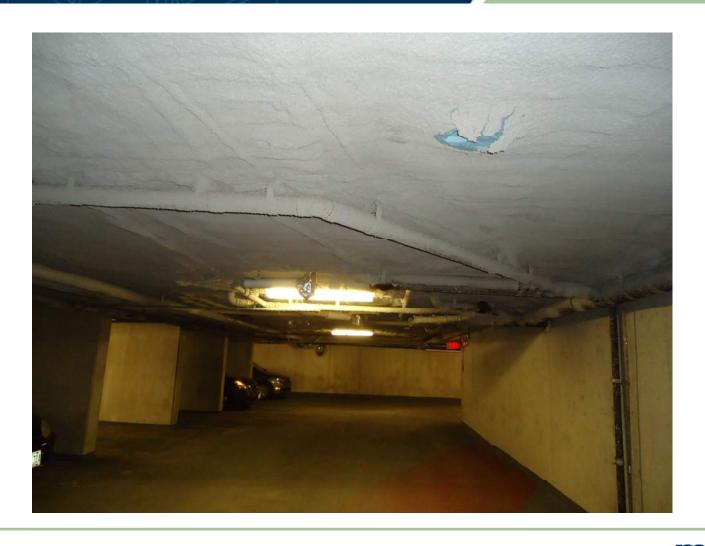
Applications



SPF for Exterior Walls

SPF for Interior Stud Cavities

SPF at Joist Ends



Attic Insulation (Interior Drywall)

SPF for Soffit Insulation (covered with thermal barrier)

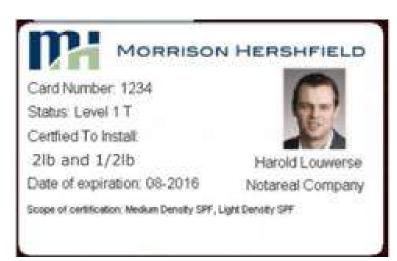
SPF under flat unvented roofs

SPF for Crawlspaces and Underslab Insulation

SPF for Below Grade Foundations Walls

SPF Quality Assurance Programs (QAP)

Certification Organization Responsibilities



Certification Organization Responsibilities

- Review and certify each manufacturers QAP
- Evaluate and certify that all installers have been properly trained in safety, equipment, testing, and product application
- Manage the SQAP
 - Review Daily Work Records
 - Perform Site Audits/Project Inspections
 - Perform Contractor Audits
 - Perform Warranty Reviews
 - Conflict Resolution
 - Consumer Complaints

Quality Assurance Program

Manufacturer/Supplier Responsibilities

Manufacturer/ Supplier Responsibilities

- Provide a product that meets S705.1 or S712.1
- Provide a training program for all contractors and their installers:
- Hire a third party Certification Organization to certify and operate their QAP
- Provide technical support
- Track product records, shipping, project logs, continual sampling and testing

Installer/Contractor Responsibilities

Installer/Contractor Responsibilities

- Provide a quality installation that:
 - Meets code requirements
 - Meets manufacturers requirements
 - Meets project requirements (thickness/location)
- This is done by:
 - Proper substrate preparation
 - Verification of environmental conditions
 - Adjusting equipment/controls accordingly
- This is confirmed by:
 - Quality checks of adhesion/cohesion/density/thickness

Troubleshooting

What could possibly go wrong with mixing chemicals on thousands of construction sites in various applications with varying substrates and environmental conditions, by hundreds of different installers?

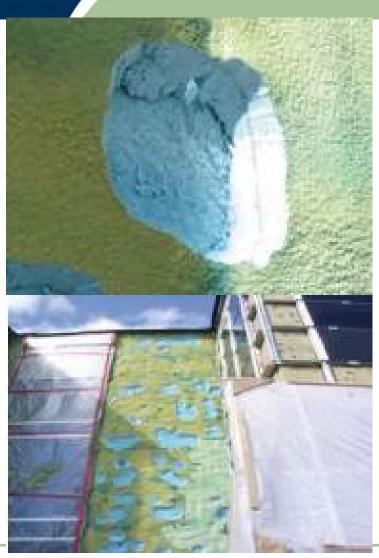
What are we looking for?

What should a SPF installation look like?

Bulk Sampling

Removal

Off Ratio Foam


Lack of Resin

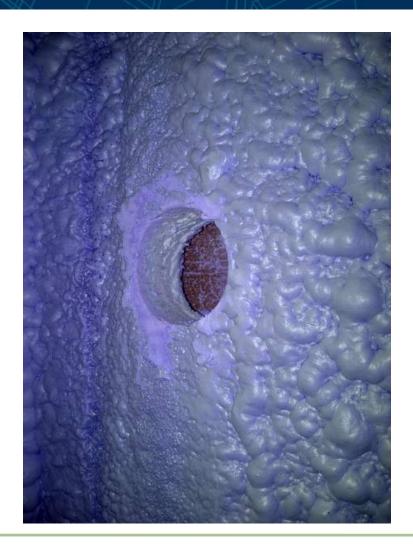
Lack of Iso

Blisters

Images: courtesy BASF, Dow

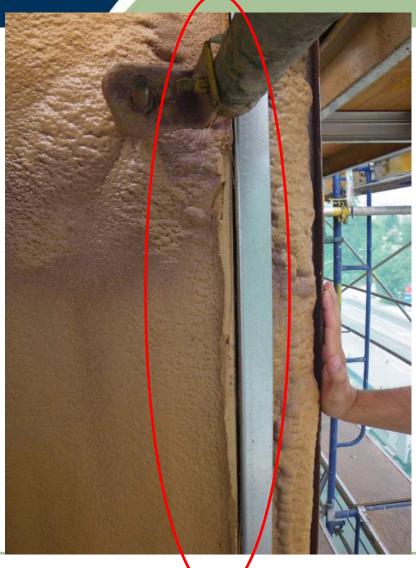
Cracking

Too Thick, Scorching

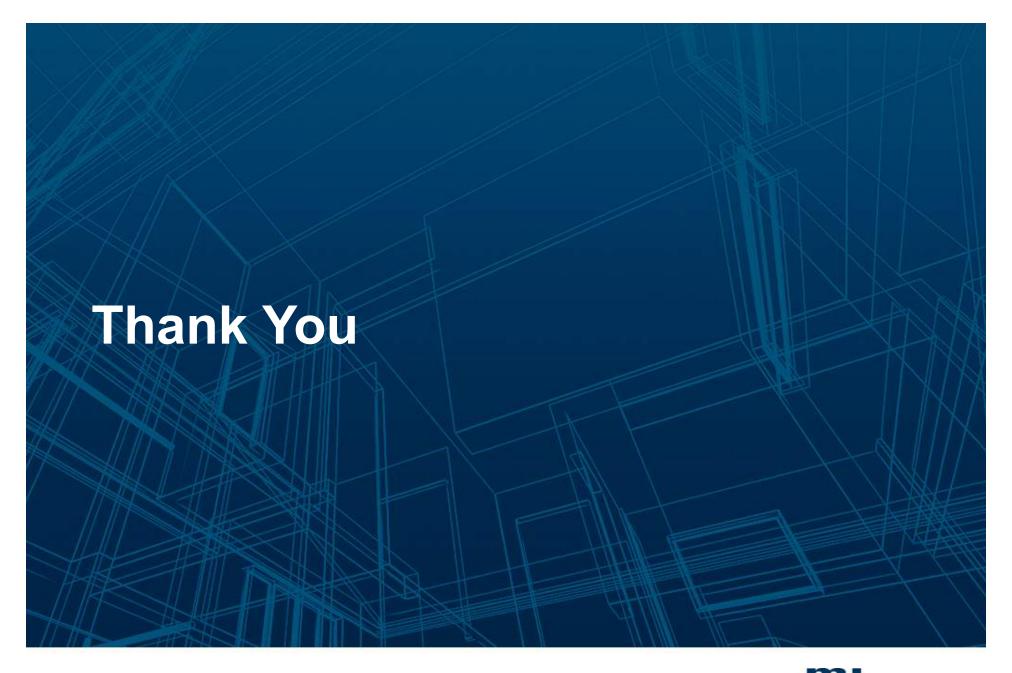


Scorching, Low Density

Poor Adhesion


Wet Substrate

Shrink back



Summary

- Problems do arise. When in doubt, rip it out.
- Quality is dependent on the installer, working within varying environmental conditions
- Installers undergo training by the manufacturer and undergo third party evaluation
- QAP provides assurance of compliance in accordance to the manufacturer installation standards as well as other applicable standards.
- Use the right foam for the right job.

