

Testing and Certification of Building Products

January 27, 2011

Presented by:

Cameron Dodd, Account Manager – Building Products Matt Lansdowne, Senior Engineer – Building Products

Presentation Agenda

- Intertek Overview
- Testing & Certification
- Product Certification Marks
- Building Products Testing
 - Structural Testing
 - Small Scale Testing
 - Weathering
 - Wind Testing
 - Fenestration Testing
 - Fire Testing
- Questions Period

Intertek – Our Heritage

- As one of Thomas Edison's companies, we began testing light bulbs in 1896.
- Over 100 years later, we have built the largest network of product safety laboratories

1896: Edison's Testing Bureau est; later named ETL 1925: SEMKO est

1927: Chas Warnock Co. founded 1961: SEMKO joins CB Scheme: today's largest issuer

1965: WH successfully challenges UL, CSA in Canada: sets precedent

1989: ETL OSHA recognized NRTL

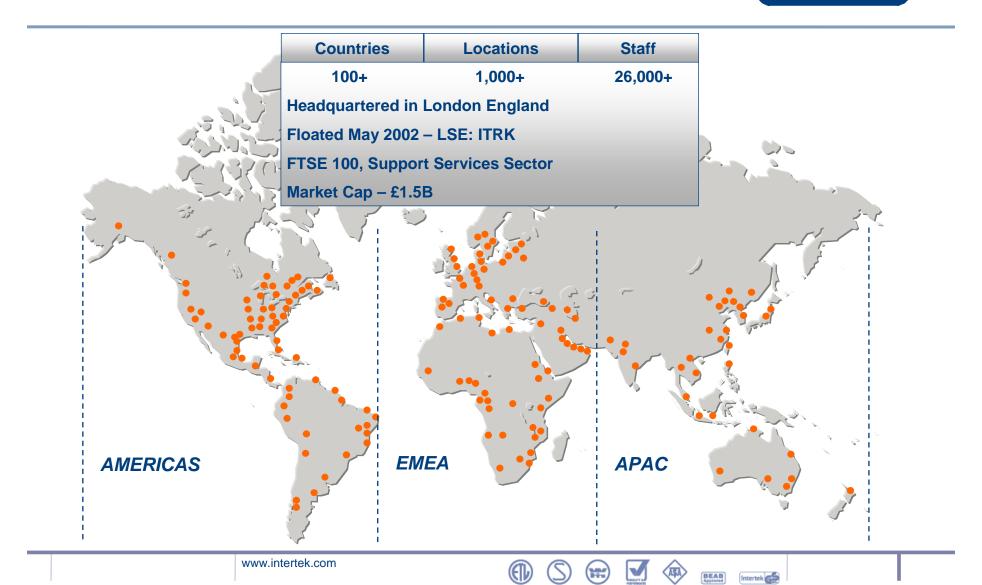
1992: Inchcape issues first ISO 9000 certificate 2004: Entela acquired as entrée into automotive

2006: ETL is the fastest Growing certification Mark in North America

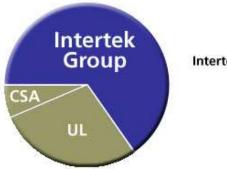
www.intertek.com

Intertek – Our Industries

Our organisation Industries we operate in What we do Aerospace & Automotive **Testing Consumer Goods Building Products** Inspection Chemical Commercial & Electrical Consumer Goods & Retailers Certification Electrical & Electronic Oil, Chemical & Agri Energy **Auditing** Food & Agriculture **Analytical Services Government & Institutions** Outsourcing IT & Telecom **Industrial Services** Industrial Advisory Medical & Pharmaceutical **Minerals** Petroleum **Training** Toys, Games & Hardlines Textile, Apparel & Footwear **Quality Assurance**

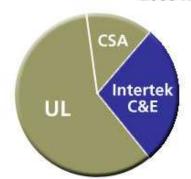


Intertek – Global Network



Intertek – By the Numbers...

- Billions of products globally feature our certification marks
- More than 2,000,000 annual tests, inspections, certifications
- Market access to nearly all 195 countries on 6 of 7 continents
- 89 Product Safety, Performance and EMC laboratories, globally
- More proprietary certification products than any other certifier – from ETL & Energy Efficiency to Quality/Performance & RoHS
- 2nd largest certification org in North America


Intertek Group v. NA Certifiers

Intertek Group: \$1.8 billion

UL: \$814 million CSA: \$183 million

Intertek C&E v. NA Certifiers 2008 Revenue

UL: \$814 million

Intertek C&E: \$381 million

CSA: \$183 million

Conversions from £ to \$ at 2008 constant exchange rates

Testing & Certification

Product certification:

- Ongoing process by <u>Independent Third Party</u> to ensure quality, safety, environmental and performance criteria for compliance to local and global regulations
- To protect the consumer

Product testing:

- Follow standardized test methods to verify products to minimum requirements
- Troubleshooting, safety, quality control, R&D, design engineering and evaluation, prototype testing and validation, and product benchmarking

Testing & Certification Cont'd

AHJ's look for testing and certification to be conducted by an <u>Accredited</u> Independent Third Party agency

 Validate manufacturer's claims and in-house test results to standardized methods

Two facets to Intertek's role as Accredited Independent Third Party testing agency:

- Test building products for compliance to referenced standards in the Building Code
- 2. Industry relations consult with manufacturers of innovative products and organizations such as CCMC to develop test plans and evaluate and certify product conformance

Testing & Certification Cont'd

Accreditations:

- Intertek is an ISO 17025 accredited testing agency
- All Intertek labs are accredited by the one or more of the following agencies:

 Testing accreditations includes various materials, structural and fire test standards in all five of our Building Products laboratories

Testing & Certification Cont'd

Accredited by all major code bodies to test in accordance with the following standards:

- ASTM
- UL and CAN/ULC
- FM
- ANSI
- CAN/CGSB
- Miami Dade County
- NFPA
- CCMC / ICC ES

Product Certification Marks

Certification Marks applied to certified products

- Confirm products meet safety, quality, and performance requirements
- Provide evidence that a product conforms to applicable standards, and that there is a program of ongoing follow-up services including factory inspections
- In most markets, conformity to local requirements is mandatory before products can be sold. In other instances, it can be a powerful marketing tool that helps build confidence throughout distribution and end-user channels.

Product Certification Marks Cont'd

- Building Products Group tests various components and systems that are used in Buildings (residential and commercial) to various test standards
- Act as a Third Party laboratory that helps clients meet Building Codes in North America and Overseas

Product Certification Marks Cont'd

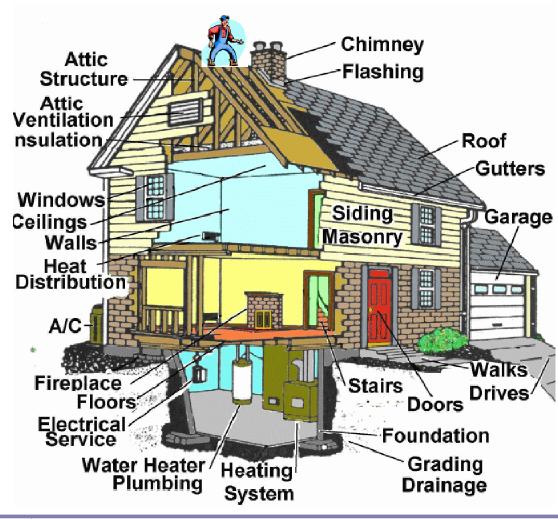
Environmental Certification:

- Environmental product claims coming under scrutiny by regulators and growing source of distrust by consumers
- "Greenwashing" the disingenuous marketing of environmentally friendly product attributes – advocacy groups and consumers looking for hard proof behind environmental claims
- Validate environmental credentials
- Manufacturers under greater pressure to ensure products meet standards and have accurate test and analysis data to back up their claims
- Ensures products conform to multiple environmental regulations

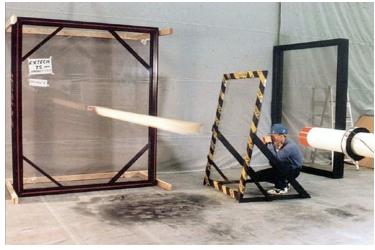
Building Products Testing

Services include, Code compliance, product evaluations and CCMC / ICC-ES submittals for approval.

- Construction products and materials testing
- Fire & flammability testing
- Structural testing
- Acoustical testing
- Weathering and environmental testing (incl. Miami-Dade County)
- Doors, hardware and fenestration products
- Hearth and plumbing products
- Field Labelling

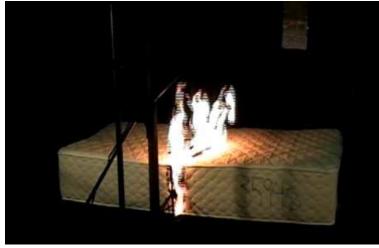


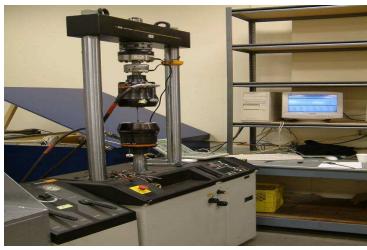
Building Products Testing Cont'd



Building Products Testing Cont'd

Intertek





Building Products Testing Cont'd

Intertek

Structural Testing

Scope	Structural testing is a means to investigate the performance of a material and/or assembly
	 Allows analysis for expected maximum load under static and cyclic conditions, strength of connections, racking characteristics and load distribution
Standard(s)	ASTM E72 (axial, compressive, transverse and racking)
	ASTM E330 (static and dynamic pressure)
Requirement	Ultimate loads are taken at failures and compared to standard
	Incremental loading is based on test standard and/or acceptance criteria
Equipment	Red Frame 80,000 lbf @ 16 ft, Blue Frame 110,000 lbf @ 16 ft
	• Hulk 500,000 lbf
	Deflection Gauges, Loading Ram, String Gauges, Load Cells

Structural Testing Cont'd

video clip...

ASTM E72 – Axial

Small Scale Testing

Scope	• Tests are performed to verify material characteristics such as tensile strength, bending strength and chemical composition
	 Used as a bench mark to evaluate products performance under various environmental conditions
Standard(s)	 Break it: ASTM D828 (tensile), ASTM D6109 (flexural), ASTM D1621 (compression), ASTM D1922 (tear)
	 Permeability: ASTM E96 (MVTR), ASTM D779 (water resistance), ASTM D570 (water absorption)
Requirement	Stipulated by test standard or Acceptance Criteria
	Baseline results are typically compared to post-weathered samples and can be used as verification tests in the future if modifications are made
Equipment	 Instron Universal Testing Machine (max. 22,000 lbF), Elmendorf Tester, Tinus Olsen (160,000 lbF)
	Environmental Chamber, Mock-up Test Apparatus, Scale

Small Scale Testing

Intertek

Weathering

Scope	Weathering is the adverse response of a product to climate, causing premature product failures
	 3 main factors of UV weathering are solar radiation (light), temperature and water (moisture)
	Other type of weathering includes freeze-thaw, heating/cooling and salt-fog
Standard(s)	• UV Weathering: ASTM G152, ASTM G153, ASTM G154, ASTM G155
	• Freeze-thaw: ASTM C67, ASTM C666
	Salt-Fog: ASTM B117
Requirement	 ● UV Weathering: duration varies (500 – 5000 hrs); testing before and after
	Freeze-thaw: weight change, no physical change
	Salt-Fog: no corrosion or blistering; visual examination
Equipment	Xenon Arc Machine, QUV Chamber, Sun tan lamps; Atlas (manufacturer)
	● Ovens (50 – 130°C); Freezers (-40°C)
	Salt Fog Machine; Atlas (manufacturer)

Weathering Cont'd

Wind Testing

Scope	 Wind testing is a means to investigate the performance of a roofing system under either static or dynamic wind conditions
	 Allows determination of ultimate load and deflection to calculate allowable wind speeds
Standards	• UL 580 (wind resistance), UL 1897 (wind up-lift), FM 4470 (wind uplift)
	• ASTM D3161 (asphalt shingles), TAS 100 (wind-driven rain)
Requirement	Ultimate loads are taken at failures and compared to test requirement
	• Incremental loading is based on test standard and/or acceptance criteria
Equipment	• 10 x 10 foot vertical chamber for TAS 125, UL 580, UL 1897
	• 5 x 9 & 12 x 24 foot horizontal chamber for FM 4470
	Wind generator capable of producing 110 mph wind speed

Wind Testing Cont'd

Intertek

FM 4470 (small scale)

TAS 125 (UL580)

FM 4470 (large scale)

UL 1897

video clip...

ASTM D3161 – 110mph Wind

FEN Testing – Air, Water & Structural

Scope	Code and/or Architect dictates the requirement of windows used in North America, which must be evaluated for their performance level
	 Additional requirements involve modeling of the windows for U-value and Energy Ratings
Standard(s)	• NAFS – AAMA/WDMA/CSA 101/I.S.2/A440-08
	Amalgamated standard combining CDN and US requirements into one standard
Requirement	 Airtightness (A1 – A3); Watertightness (B1 – B7); Wind Load (C1 – C5)
	Ease of Operation; Resistance to Forced Entry (voluntary)
	Condensation Resistance, Screen Strength (voluntary)
Equipment	• White Wall is used to perform the 3 required tests; 20' x 20 wall
	 Airtightness (75 Pa); Watertightness (720 Pa); Wind (4800 Pa)
	Deflection Gauges

FEN Testing – AWS Cont'd

FEN Testing – Miami Dade Program

Scope	 Florida State in the US has higher test requirements for all types of Building Products, above the IBC and IRC
	 Windows need to show that they can withstand and be used in High Velocity Hurricane Zones (HVHZ)
Standard(s)	TAS 201, Impact Methodology
	TAS 202, Impact and Air, Water & Structural TAS 202, Impact and Air, Water & Structural
	• TAS 203, Cycling
Requirement	• TAS 202: Airtightness (75 Pa); Watertightness (720 Pa); Wind (4800 Pa)
	• TAS 202: 3 samples, 2x4 hit @ 50 ft/sec, applied at center, corner & frame
	 TAS 203: 3 samples, 8 loading sequences at different pressures
Equipment	 White Wall is used to perform the 3 required tests; 20' x 20 wall
	Missile Cannon
	Deflection Gauges

FEN Testing – Miami Dade Cont'd

video clip...

TAS 201 – Impact Test

FEN Testing – Curtain Wall

Scope	Curtain Wall testing is unique to the Vancouver office
	• Testing is specified by Architect; manufacturer that wins tender must comply with their specs
Standard(s)	• AAMA 501
	Various other ASTM standards are available; specified by Architect
Requirement	Air, Water, Dynamic Water
	Thermal Cycling, Air and Water
	Deflection Readings, Seismic, Blow-out, Seismic Overload
Equipment	Curtain Wall Stand, 30' wide x 40' high
	Loading Ram, Deflection Gauges, Blowers
	Aircraft Engine (DC-6, 2000 hp, 120 mph)
	Refrigeration Unit

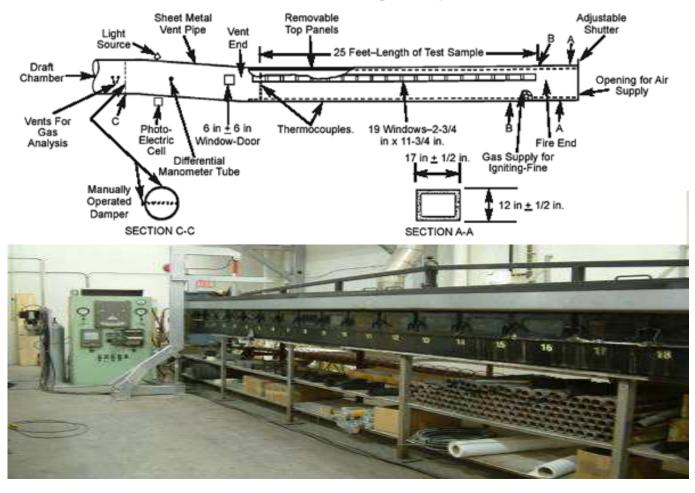
FEN Testing - Curtain Wall Cont'd

video clip...

Wind Driven Rain – CCMC Test (70mph – 110mph)

Fire Testing – Surface Burning

Scope	 Rating assigned to building materials based on data generated from a fire test, which indicate the rate at which flame will spread over the surface
	• 2 components: flame spread index (FSI) and smoke developed index (SDI)
Standard(s)	• ASTM E84, CAN/ULC S102, CAN/ULC S102.2, UL 723, NFPA 255
	CAN/ULC S102 & CAN/ULC S102.2 require 3 runs
Requirement	• Class A: FSI = 0 − 25 / SDI = 0 − 450
	● Class B: FSI = 26 – 75 / SDI = 0 – 450
	● Class C: FSI = 76 – 100 / SDI = 0 – 450
Equipment	Steiner Tunnel, refer to diagram
	Sample size is 18 inches wide by 24 feet long



Fire Testing – Surface Burning Cont'd

Sketch of Steimer Tunnel Test for evaluating flame spread characteristics

Fire Testing – Roofing

Scope	• Fire-resistance classifications measure roof assemblies' relative resistances to external fire exposures of a roof system
	Small scale fire tests determine fire properties of the individual material
Standards	ASTM E108, UL 790, CAN/ULC S107 (Roof Covering)
	 ASTM E84 (flame spread), ASTM D635 (burning rate), ASTM D1929 (Spontaneous Ignition)
Requirement	Assigned by local building officials based on occupancy and the Code
	Class A, B and C Roof Coverings
	 flame spread, burning rate and spontaneous ignition ratings are defined by the Code
Equipment	ASTM E108 Furnace (Middleton, WI)
	Steiner Tunnel (Coquitlam, BC & San Antonio, TX)
	Small Scale Fire Lab (Coquitlam, BC, Middleton, WI)

Fire Testing – Roofing Cont'd

ASTM D635

ASTM E108 (SoF)

ASTM E108 (SoF)

ASTM D1929

Fire Testing – Doors

Scope	 A fire door is a door with a fire-resistance rating used as part of a passive fire protection system to reduce the spread of fire or smoke
	 Intertek has the largest number of Fire Door Certification clients in North America
Standard(s)	Negative Pressure: CAN/ULC S104, NFPA 252, UL 10(b)
	Positive Pressure: UL 10(c)
	Installation Standard: NFPA 80
Requirement	• 20 min, 45 min, 60 min, 90 min, 2 hr, 3 hr Fire Ratings
	No through penetration, no sustained flaming on un-exposed side
	Must withstand fire hose impact test w/o creating an opening
	Remain latched and meet deflection & separation requirements
Equipment	• Pilot scale: 48" x 52", used for R&D to evaluate hardware or options
	 Mid scale: 4' x 8', used for full size single swing door
	• Full scale: ~ 10' x 10', used for pair doors, door frames, windows

Fire Testing – Doors Cont'd

video clip...

UL 10C – Mid-Scale with Hose Stream (1800 deg F)

Fire Testing – Wall Assemblies

Scope	• "Fire Resistance" designates the ability of an assembly to contain a fire for a specified period of time
	 Assemblies include partition, floor/ceiling, roof/ceiling, protected beam or column
Standard(s)	• ASTM E119, CAN/ULC S101, NFPA 251, UL 263
	Testing procedures similar with subtle differences in loading and set-up
	Need to understand client's market
Requirement	Assigned by local building officials based on occupancy and the Code
	• 45 min, 1 hr, 2 hr, 3 hr Fire Resistance Ratings (load and non-load bearing)
	Assymetrical walls are tested on both sides
	Must pass Hose Stream test
Equipment	• Full scale Furnace, 10' x 10' (100 sq ft)
	Horizontal Furnace, 12' x 15' (180 sq ft)
	Load bearing frames

Fire Testing – Wall Assemblies Cont'd

Fire Testing – Wall Assemblies Cont'd

Intertek

video clip...

NFPA 286 – Room Corner Burn (EPS foam flash-over)

Questions / Open Forum

