







### Questions

How quickly can water drain through wall systems?

How much water is retained after a wetting event?

Where is the water retained in the wall system?

How quickly does a wall system dry under normal conditions?

How do various capillary breaks affect wetting and drying?



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### Agenda

Testing and Measurement

Construction of Test Panels

EIFS Wall Systems

Vinyl Wall Systems

Hardboard, Wood and Cement Board Wall Systems

Drainage, Water Retention & Drying

EIFS Wall Systems

Vinyl Wall Systems

Hardboard, Wood and Cement Board Wall Systems

Conclusions and Next Steps



### **Testing and Measurement**

- •Test set-up
- Instrumentation
- Water flow rate
- Trickle trough
- Environmental conditions
- Moisture content in drainage cavity
- Test program



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### **Testing and Measurement**

### Test Set-up

- The purpose of the test was to accurately measure the water retained in each test wall
- Set-up used was composed of three weight-balancing systems
- The weight of the test wall was counterbalanced by other weights using a balance beam
- This allowed the use of a more sensitive load cell



### **Testing and Measurement**

### Instrumentation

• Load cell data acquisition was provided by a compression load cell having a capacity of 35kg

• The load cell was positioned directly under the centre of the bottom plate of each wall

• A ball bearing was installed under the bottom plate of the test wall and rested directly on the load cell bearing plate

• Resolution - 0.2g



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### **Testing and Measurement**

### Water Flow Rate

• Based on ASTM E2273-03 Standard Test Method for Determining Drainage Efficiency of EIFS

• 8L of water drained into the wall cavity for a 1 hour period

• Water was piped to the trickle trough by an air pressure system

• Water in a glass carboy was constantly weighed during the wetting phase

• The flow rate was calculated and adjusted with a micro valve



CMHC SCHL

### **Testing and Measurement**

### **Trickle Trough**

• Water is delivered to a Plexiglas distribution trough which allows the water to trickle into the cavity

• The trickle trough is 610 mm long and 95 mm wide with a bottom slope of 20%

• 2 mm diameter holes are spaced 38 mm c/c in the bottom corner

• Flow can be directed either to the front or the back surface of the drainage cavity with shims

• A serrated plastic sheet directs the flow to the chosen locations



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### **Testing and Measurement**

### **Environmental Conditions**

• 16 pairs of RH and Temperature sensors monitor the environmental conditions

• 4 sensor pairs are installed on each wall (2 below the trickle trough and 2 placed symmetrically on both sides at the same level)

• Sensors on the wall monitor the exiting air conditions at the top of the drainage cavity

• 4 additional monitoring stations are installed near the test area



### **Testing and Measurement**

### **Moisture Content in Walls**

• Moisture content was evaluated in a qualitative way using a capacitance Wagner L620 moisture meter

• A series of 90 readings were taken, before the test and after the 48hrs drying phase, on the back of the OSB sheathing surface of each specimen

• Differences in moisture content were computed and contour maps for the retained water were done for each wall







| Drainage and Drying: The Yin and Yang of Moisture in Wall Systems                               |                                           |                  |                               |                     |                                 |                  |                   |                                             |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------------------|---------------------|---------------------------------|------------------|-------------------|---------------------------------------------|--|--|
| Construction of Test Walls                                                                      |                                           |                  |                               |                     |                                 |                  |                   |                                             |  |  |
| Wall/Cladding Assemblies                                                                        |                                           |                  |                               |                     |                                 |                  |                   |                                             |  |  |
| Number of Test Walls                                                                            |                                           |                  |                               |                     |                                 |                  |                   |                                             |  |  |
|                                                                                                 |                                           |                  | Location<br>of Water<br>Entry |                     | Drainage C                      | avity            |                   | Total<br>No.<br>of Walls<br>to be<br>Tested |  |  |
| Siding or<br>Cladding Type                                                                      | No. of Sets<br>of Wall Tests<br>3 per set | WRB              |                               | Ribbons<br>Adhesive | Proprietary<br>Drainage<br>Mats | Batten<br>Straps | Direct<br>Applied |                                             |  |  |
| EIFS                                                                                            | 2<br>3                                    | LA-WPB<br>LA-WPB | F/B<br>Center                 | 6 (repeat)<br>9     |                                 |                  |                   | 6<br>9                                      |  |  |
| Vinyl siding                                                                                    | 1                                         | C/P              | center                        |                     |                                 |                  | 3                 | 3                                           |  |  |
| Hardboard siding                                                                                | 1                                         | Р                | C/F/B                         |                     | 2**                             |                  | 1***              | 3                                           |  |  |
| Wood siding                                                                                     | 2                                         | Р                | C/F/B                         |                     | 2**                             | 1**              | 2*                | 5                                           |  |  |
| Cementitious siding                                                                             | 1                                         | C/P              | center                        |                     |                                 |                  | 2                 | 2                                           |  |  |
| C/P - Cellulose or Polyolefin<br>* One Bevel- One Shiplap<br>** All Shiplap<br>*** Bevel Spline |                                           |                  |                               |                     |                                 |                  |                   |                                             |  |  |





# Drainage and Drying: The Yin and Yang of Moisture in Wall Systems Construction of Test Walls Xinyl Wall Systems Vinyl profile 1: double 4.5" Horizontal, direct applied over 15 b. building paper Vinyl profile 2: double 4.5" Dutch lap, direct applied over BPO sheathing membrane Vinyl profile 2: double 4.5" Dutch lap, direct applied over 15 b. building paper





### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems Hardboard Wall Systems • Wall 1: Hardboard siding profile 1 (direct applied) with SBPO • Wall 2: Hardboard siding profile 2 (direct applied) with drainage mat (type 1) and SBPO 7/8' 1 3/16 " • Wall 3: Hardboard siding profile 2 4 5/16" (direct applied) with drainage mat 11 7/8 " (type 2) and SBPO 1 3/16 he 4 5/16 "

### Construction of Test Walls

### Hardboard Wall Systems

• Wall 1 was tested only once while walls 2 and 3 (with drainage mats) were tested twice (once on the back and once on the front surface of the drainage cavity)

• For wall 1 water was simply allowed to drip behind the top course through the 4 mm space provided at the top edge of the siding (similar to vinyl walls)



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### Construction of Test Walls Wood Wall Systems

• Wall 1: Wood siding profile 1 (direct applied) with SBPO

• Wall 2: Wood siding profile 2 (direct applied) with drainage mat (type 3) and SBPO

• Wall 3: Wood siding profile 2 (applied on furring) with SBPO











### Drainage, Water Retention and Drying

# **EIFS Wall Systems**

| Test Series                  | Manufacturer | Wall # | Wall        | Location of           | Ret               | ained Wate        | r (g)            |
|------------------------------|--------------|--------|-------------|-----------------------|-------------------|-------------------|------------------|
|                              |              |        | Designation | Trickling             | l-hr              | 2-hr              | 48-hr            |
| Lowest Initial<br>Retention  | A            | I      | A-4         | Initial<br>WRB<br>EPS | 267<br>215<br>239 | 196<br>139<br>165 | 86<br>101<br>153 |
|                              | В            | 2      | B-1         | Initial<br>WRB<br>EPS | 102<br>117<br>188 | 30<br>24<br>47    | 8<br>61<br>42    |
|                              | С            | 3      | C-1         | Initial<br>WRB<br>EPS | 282<br>235<br>119 | 189<br>109<br>54  | 115<br>51<br>34  |
|                              | A            | 4      | A-1         | Initial<br>WRB<br>EPS | 807<br>178<br>152 | 744<br>54<br>61   | 574<br>19<br>46  |
| Highest Initial<br>Retention | В            | 5      | B-4         | Initial<br>WRB<br>EPS | 504<br>134<br>150 | 385<br>35<br>59   | 223<br>0<br>31   |
|                              | С            | 6      | C-3         | Initial<br>WRB<br>EPS | 348<br>419<br>141 | 305<br>95<br>63   | 292<br>28<br>44  |

Water retention - Initial, WRB, EPS







Drainage, Water Retention and Drying

# **EIFS Wall Systems**

### Observations

• Water retention at both 2-hr and 48-hr times was usually less that when originally tested by trickling in the middle of the drainage gap

• Water retention did not appear to have taken place in joints as was expected.

• Despite having been selected for their different original performance, this difference was not reflected in the tests conducted at this time.



# <text><text><section-header><list-item><list-item><list-item><list-item><list-item>





Drainage, Water Retention and Drying

# Vinyl Wall Systems

### Observations

• Water immediately started to drain out of the small drainage holes below the first course of siding

• Most of the water drained through the holes at the first joint

• Some water ended up on the floor and on the bottom part of the specimen (sill plate)

• Some water leaked out through the sealed edges



### Drainage and Drying: The Yin and Yang of Moisture in Wall Systems

### Drainage, Water Retention and Drying

### Vinyl Wall Systems

### Observations

- Leaked water wetted bottom corner of panel
- · All walls demonstrated similar moisture loss

• Exterior water on the siding was wiped off and weighed after the 2 hrs wetting/drainage phase

- Drying rate for wall 1 was under 1g/hour
- Drying rate for walls 2 and 3 was 1.5g/hour

• When walls were dismounted from test frame, some free water that was held by the siding drained out on the floor





Drainage and Drying: The Yin and Yang of Moisture in Wall Systems
Drainage, Water Retention and Drying
Yinyl Wall Systems
Observations of Moisture Mapping
Readings for moisture mapping were taken before the wetting/drainage phase and after the 48hrs drying phase
Differences in MC were higher at the first course of siding
The maximum difference in moisture content observed for all three walls was around 0.8 %
Only 1 wall showed a difference in MC at the bottom of the wall





| Drainage and Drying:                           | The Yin and Ya                         | ng of Moisture in             | n Wall Systems                |  |  |
|------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------|--|--|
| Drainage, Water Ret<br>Hardboard Wall S        | ention and Dryin<br><b>ystems</b>      | ng                            |                               |  |  |
| Water Retention - Walls                        | 1, 2 & 3 - Water dire                  | ected to WRB                  | Wall 3                        |  |  |
|                                                | HI/DA/SBPO                             | H2/Mat1/SBPO                  | H2/Mat2/SBPO                  |  |  |
| l hour<br>(peak reading )                      |                                        | 368 <sup>?%**</sup>           | 446                           |  |  |
| Retained weight of<br>water at 2 hours (g)     | de<br><sup>1</sup> /m <sup>2</sup> 117 | <b>231</b> 4 <sup>6/16*</sup> | 11 7%· <b>284</b>             |  |  |
| Retained weight of water after 48 hours (g)    | I 1 <sup>wr</sup> 35                   | <b>156</b> 4 5/16*            | 229                           |  |  |
| Water Retention - Walls                        | 1, 2 & 3 - Water dire                  | ected to back face of         | siding                        |  |  |
| Time                                           | Wall I (retest)<br>H I/DA/SBPO         | Wall 2<br>H2/Mat1/SBPO        | Wall 3<br>H2/Mat2/SBPO<br>371 |  |  |
| l hour<br>(peak reading )                      | 383                                    | 276                           |                               |  |  |
| Retained weight of<br>water at 2 hours (g)     | 130                                    | 183                           | 254                           |  |  |
| Retained weight of<br>water after 48 hours (g) | 0                                      | 109                           | 221                           |  |  |



# Drainage, Water Retention & Drying

### Hardboard Wall Systems

### Observations

• Some of the water drained out below the first course of siding and down face of siding

• High initial retained water probably stored in drainage mats













### Drainage, Water Retention and Drying Cement Board Wall Systems Water Retention - Walls 1& 2

| Time                                           | Wall I<br>Fiber Cemen∜DA/SBPO | Wall 2<br>Fiber Cement/DA/BP |  |  |
|------------------------------------------------|-------------------------------|------------------------------|--|--|
| l hour<br>(peak reading)                       | 412                           | 284                          |  |  |
| Retained weight of<br>water at 2 hours (g)     | 340                           | 197                          |  |  |
| Retained weight of<br>Water after 48 hours (g) | 50                            | 0                            |  |  |

CMHC SCHL

•Wall 1: Fibre cement board (direct applied) with SBPO

• Wall 2: Fibre cement board (direct applied) with 15# building paper







| Drainage and Drying: The Yin and Yang of Moisture in Wall Systems |    |                 |              |              |               |               |          |               |                |                |                 |
|-------------------------------------------------------------------|----|-----------------|--------------|--------------|---------------|---------------|----------|---------------|----------------|----------------|-----------------|
| Drainage, Water Retention & Drying                                |    |                 |              |              |               |               |          |               |                |                |                 |
| All Wall Systems                                                  |    |                 |              |              |               |               |          |               |                |                |                 |
| Mat'l                                                             | #  | Description     | l Hr<br>gram | 2 Hr<br>gram | 48 Hr<br>gram | Mat'l         | #        | Description   | l Hr.<br>grams | 2 Hr.<br>grams | 48 Hr.<br>grams |
| EIFS                                                              |    | Middle of drain | 267          | 196          | 86            | Vinyl         | 1        | PI/DA/BP      | 698            | 364            | 283             |
| EIFS                                                              | 2  | "               | 102          | 30           | 8             | Vinyl         | 2        | P2/DA/SBPO    | 500            | 236            | 130             |
| EIFS                                                              | 3  | "               | 282          | 189          | 115           | Vinyl         | 3        | P2/DA/BP      | 282            | 189            | 115             |
| EIFS                                                              | 4  | "               | 807          | 744          | 574           | Hard          | I        | HI/DA/SBPO    | 372            | 117            | 35              |
| EIFS                                                              | 5  | "               | 504          | 385          | 223           | Hard          | 2        | H2/Mat I/SBPO | 368            | 231            | 156             |
| EIFS                                                              | 6  | "               | 348          | 305          | 292           | board         |          |               | 500            | 251            | 150             |
| EIFS                                                              | la | On WRB          | 215          | 139          | 101           | Hard          | 3        | H2/Mat2/SBPO  | 446            | 284            | 229             |
| EIFS                                                              | 2a | "               | 117          | 24           | 61            | Hard          | <b>-</b> | HI/DA/SBPO    | 383            | 130            | 0               |
| EIFS                                                              | 3a | **              | 235          | 109          | 51            | board         | a        |               |                |                |                 |
| EIFS                                                              | Ib | On EPS          | 239          | 165          | 153           | Hard<br>board | 2<br>a   | H2/Mat1/SBPO  | 276            | 183            | 109             |
| EIFS                                                              | 2b | "               | 188          | 47           | 42            | Hard          | 3        | H2/Mat2/SBPO  | 371            | 254            | 221             |
| EIFS                                                              | 3b | "               | 119          | 54           | 34            | board         | a        |               |                |                |                 |
| EIFS                                                              | 4a | On WRB          | 178          | 54           | 19            | Wood          |          | W2/DA/SBPO    | 842            | 426            | 294             |
| EIFS                                                              | 5a | "               | 134          | 35           | 0             | Wood          | 2        | W1/Mat3/SBPO  | 415            | 260            | 123             |
| EIFS                                                              | 6a | "               | 419          | 95           | 28            | Wood          | 3        | W2/Baten/SBPO | 603            | 467            | 0               |
| EIFS                                                              | 4b | On EPS          | 152          | 61           | 46            | Cement        | 1        | DA/SBPO       | 412            | 340            | 50              |
| EIFS                                                              | 5b | **              | 150          | 59           | 31            | Board         |          |               |                |                |                 |
| EIFS                                                              | 6b | "               | 141          | 63           | 44            | Board         | 2        | DA/BP         | 284            | 197            | 0               |

### Conclusions

- Laboratory conditions were sufficiently steady for drying of non EIFS walls
- Direct applied sidings leaked out through the joints and the water didn't drain all the way to the bottom of the wall
- Direct applied cement board siding showed high water retention at 2-hrs, but less than direct applied wood siding.
- Drying rate was high for most of the systems tested
- EIFS wall systems showed lowest water retention at 2-hrs.



- Over 90% of 8kg water drained through all samples during 1 hr wetting
- Water retained at 1 hr was between 842g (wood direct applied over SBPO) and 102g (EIFS)
- Water retained at 2 hrs was between 467g (wood on furring) and 24g (EIFS)

• Water retained at 48 hrs was between 294g (wood direct applied over SBPO) and 0 (EIFS, hardboard, wood on furring, cement board)

• We don't know exactly where water is retained in the wall system or whether this will cause a problem

CMHC SCHL

- Drying rates were between 0.8 g/hr and 1.5 g/hr at 20°C and 50% RH
- Drainage mats & furring stored water in the short term but dried rapidly



